4,513 research outputs found

    Probing the Mechanisms of Fibril Formation Using Lattice Models

    Full text link
    Using exhaustive Monte Carlo simulations we study the kinetics and mechanism of fibril formation using lattice models as a function of temperature and the number of chains. While these models are, at best, caricatures of peptides, we show that a number of generic features thought to govern fibril assembly are present in the toy model. The monomer, which contains eight beads made from three letters (hydrophobic, polar, and charged), adopts a compact conformation in the native state. The kinetics of fibril assembly occurs in three distinct stages. In each stage there is a cascade of events that transforms the monomers and oligomers to ordered structures. In the first "burst" stage highly mobile oligomers of varying sizes form. The conversion to the aggregation-prone conformation occurs within the oligomers during the second stage. As time progresses, a dominant cluster emerges that contains a majority of the chains. In the final stage, the aggregation-prone conformation particles serve as a template onto which smaller oligomers or monomers can dock and undergo conversion to fibril structures. The overall time for growth in the latter stages is well described by the Lifshitz-Slyazov growth kinetics for crystallization from super-saturated solutions.Comment: 27 pages, 6 figure

    Integration of In-Flight and Post-Flight Water Monitoring Resources in Addressing the U.S. Water Processor Assembly Total Organic Carbon (TOC) Anomaly

    Get PDF
    Beginning in June of 2010, the total organic carbon (TOC) concentration in the U.S. Water Processor Assembly (WPA) product water started to increase. A surprisingly consistent upward TOC trend was observed through weekly ISS total organic carbon analyzer (TOCA) monitoring. As TOC is a general organic compound indicator, return of water archive samples was needed to make better-informed crew health decisions on the specific compounds of concern and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to the health-based screening limit of 3,000 g/L before archive samples were returned. Archive samples were returned on 22 Soyuz in September 2010 and on ULF5 in November of 2010. The samples were subjected to extensive analysis. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were detected at high levels. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of siloxanes which are thought to be ubiquitous in the ISS atmosphere. A toxicological limit was set for DMSD and a forward plan was developed for conducting operations in the context of understanding the composition of the TOC measured in flight. This required careful consideration of existing ISS flight rules, coordination with ISS stakeholders, and development of a novel approach for the blending of inflight TOCA data with archive results to protect crew health. Among other challenges, team members had to determine how to utilize TOCA readings when making decisions about crew consumption of WPA water. This involved balancing very real concerns associated with the assumption that TOC would continue to be comprised of only DMSD. Demonstrated teamwork, multidisciplinary awareness, and innovative problem-solving were required to respond effectively to this anomaly

    Time-dependent perturbation theory for vibrational energy relaxation and dephasing in peptides and proteins

    Full text link
    Without invoking the Markov approximation, we derive formulas for vibrational energy relaxation (VER) and dephasing for an anharmonic system oscillator using a time-dependent perturbation theory. The system-bath Hamiltonian contains more than the third order coupling terms since we take a normal mode picture as a zeroth order approximation. When we invoke the Markov approximation, our theory reduces to the Maradudin-Fein formula which is used to describe VER properties of glass and proteins. When the system anharmonicity and the renormalization effect due to the environment vanishes, our formulas reduce to those derived by Mikami and Okazaki invoking the path-integral influence functional method [J. Chem. Phys. 121 (2004) 10052]. We apply our formulas to VER of the amide I mode of a small amino-acide like molecule, N-methylacetamide, in heavy water.Comment: 16 pages, 5 figures, 5 tables, submitted to J. Chem. Phy

    Clec9a-mediated ablation of conventional dendritic cells suggests a lymphoid path to generating dendritic cells In Vivo

    Get PDF
    Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired

    Probing Plasmodium falciparum sexual commitment at the single-cell level

    Get PDF
    Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign

    Vibrational energy relaxation in proteins

    Full text link
    An overview of theories related to vibrational energy relaxation (VER) in proteins is presented. VER of a selected mode in cytochrome c is studied using two theoretical approaches. One is the equilibrium simulation approach with quantum correction factors, and the other is the reduced model approach which describes the protein as an ensemble of normal modes interacting through nonlinear coupling elements. Both methods result in estimates of the VER time (sub ps) for a CD stretching mode in the protein at room temperature. The theoretical predictions are in accord with the experimental data of Romesberg's group. A perspective on future directions for the detailed study of time scales and mechanisms for VER in proteins is presented.Comment: 12 pages, 4 figures, accepted for publication in PNA
    corecore