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Abstract

The Generalized Replica Exchange Method (gREM) was applied to simulate a solid-liquid phase tran-

sition in a nanoconfined bilayer water system using the monatomic water (mW) model. Merging an opti-

mally designed non-Boltzmann sampling weight with replica exchange, gREM is particularly well suited

for the effective simulation of first-order phase transitions characterized by S-bends (“backbending”) in the

statistical temperature and a bimodal structure in the canonical probability density function. The effec-

tive temperatures of gREM were designed to form unique crossing points with the statistical temperature,

thereby facilitating sampling of energy states across the transition region. Statistical Temperature Weighted

Histogram Analysis Method (ST-WHAM) was used to reweight gREM simulationresults into canonical

ensemble averages, including the Helmholtz free energy, internal energy, and heat capacity. The minimized

structures of bilayer water systems with varying sizes were obtained through basin-hopping global opti-

mization using the GMIN package, and ice structures composed of pentagons, hexagons and heptagons

were observed.
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I. INTRODUCTION

The phase behavior of bulk water has received extensive interest due to the rich complexity of

structures characterizing liquid, solid and clusters [1–4]. Nanoscale confined water adds a new

dimension of phase behavior and has generated intense interest [5–10] due to its relevance in

biology and materials science. In the case of water confined between two infinite parallel plates,

monolayer ice, bilayer ice, and three-layer ice structureshave been observed as a function of the

separation between the plates [7, 11, 12]. Bilayer water can form various crystal, quasicrystals,

and amorphous structures, including hexagonal ice, pure pentagonal ice, mixed hexagonal and

pentagonal ice, and dodecagonal quasicrystals [8]. The transitions from liquid to various crystal

and quasicrystal states were shown to be first-order, based on the sharp drop in the potential energy

and discontinuity in the diffusion coefficient.

First-order phase transitions have a unique feature in the statistical temperature referred to

as an S-bend, through which the temperature decreases upon absorbing energy in the region of

metastable and unstable states. The behavior results from the depletion of phase-coexistent con-

figurations associated with the free energy penalty for forming interfaces [13]. These features are

associated with a bimodal structure in the energy distribution, the indicator of two-phase coexis-

tence, in which the energy states between the two peaks are intrinsically unstable for the canonical

ensemble [14–18]. A natural way to enhance sampling in the phase-coexistence region is the

replacement of canonical sampling in temperature with non-canonical distributions. The general-

ized Replica Exchange Method (gREM) [19] incorporates a non-Boltzmann sampling weight from

a generalized ensemble into the replica exchange paradigm [20–32]. The generalized ensemble

sampling weights are determined from tailored effective temperatures through an inverse mapping

strategy. The mapping is equivalent to umbrella sampling for a number of energy windows, with

a “thermometer” in each window. Since its development, gREM has been applied to study phase

transitions in Potts spin systems, an adapted Dzutugov model, Lennard-Jones fluid, and bulk wa-

ter [19, 33–35]. Here we study the solid-liquid phase transition in bilayer confined water as a

demonstration of the utility of the generalized Replica Exchange Method.

2



II. METHODS AND MATERIALS

A. Generalized Exchange Method

In a gREM simulation there areM replicas. Each replicaα, (α = 1, · · · ,M), is assigned an ef-

fective temperatureTα(E; λα) and samples energy states consistent with the generalizedensemble

weightWα(E; λα). The sampling weightWα(E, λα) is determined from the effective temperature

through the inverse mapping strategy

Tα(E; λα) = [∂wα/∂E]−1, (1)

wherewα = −lnWα is the generalized effective potential.

The effective temperature is conveniently parameterized using linear functions with uniform

slope for all replicas (α = 1, · · · ,M) as

Tα(E; λα) = λα + γ0(E − E0), (2)

where the control parameterγ0 is the constant slope,E0 is a constant in the relevant energy range,

andλα is theT-intercept at a chosenE0.

The linear effective temperature of Eq. (2) produces a sampling weight

Wα(E; λα) ∼ [λα + γ0(E − E0)]
−1/γ0. (3)

The sampling weight in Eq. (3) governs the trial moves withinone replica and replica exchanges

between neighboring replicas. The acceptance ratio of a Monte Carlo trial move in configuration

space within replicaα is

AgREM(x→ x′) = min[1,ewα(E(x))−wα(E(x′))]. (4)

The acceptance ratio for replica exchange between neighboring replicasα andα + 1 is

AgREM(α; xx′) = min
[

1,exp(∆x
α)

]

, (5)

where∆x
α = wα+1(E(x′)) − wα+1(E(x)) + wα(E(x)) − wα(E(x′)), andwα = −lnWα.

B. Statistical Temperature WHAM

As each replicaα = 1, ...,M in gREM samples non-canonical sampling weightsWα(E), the data

must be reweighted to estimate canonical averages. We calculated the density of statesΩ(E) and
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the entropyS(E) = kBlnΩ(E) by combining multiple generalized ensemble runs via the Statistical

Temperature Weighted Histogram Analysis Method (ST-WHAM) [36–38]. Once the density of

states is known, canonical thermodynamic averages can be determined for any temperature by the

reweighting technique.

Unlike the conventional Weighted Histogram Analysis Method (WHAM) [39], ST-WHAM

does not use an iterative technique to determine the relevant partition function, but instead de-

termines the inverse statistical temperature,βS = 1/TS, directly fromWα(E) and the associated

histogramHα(E). The integration ofβS = ∂lnΩ̃(E)/∂E provides an estimate for the entropy and

the density of states. This procedure leads to a substantialacceleration of the data analysis without

loss in accuracy.

The ST-WHAM estimate for the inverse statistical temperature is

β∗S =
∑

α

f ∗α (E)

(

∂lnHα
∂E

−
∂lnWα
∂E

)

, (6)

whereHα(E) is the energy histogram in replicaα, f ∗α (E) = Hα(E)/
∑

α Hα(E) is the simulated

histogram fraction.

Integration ofβ∗S provides an entropy estimateS(E) as well asΩ(E), but direct integration

is not desirable due to the rapid variation ofβS for small E. The statistical temperatureT∗S was

approximated on an equally spaced enthalpy grid which makespossible analytical integration [36].

OnceS(E) is determined, all canonical thermodynamic properties are completely determined.

The Helmholtz free energy at a given temperatureT is calculated byFT(E) = E − TS(E).

The reweighted probability density function atT is given byPT(E) = e−FT (E)/T
= eS(E)−E/T . The

canonical expectation value for any variable may then be computed as

〈A(T)〉 =

∫

dEeS(E)−βEA(E)
∫

dEeS(E)−βE
, (7)

and the canonical heat capacity is estimated through calculation of the fluctuations of the internal

energy,

Cv(T) =
〈E(T)2〉 − 〈E(T)〉2

kBT2
, (8)

C. Monatomic water (mW) model

We employed the monatomic water model (mW), which is a coarse-grained model that repre-

sents a water molecule as an intermediate element between carbon and silicon [40]. This potential
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reproduces the structural, thermodynamic, and dynamic properties of liquid water with comparable

or better accuracy than the most popular atomistic water models at much less computational cost.

mW has been applied in the study of pure bulk water [41–43] andnanoconfined water [44, 45], as

well as biological water [46] and clathrate hydrates [47].

In this study, the water-like molecules were confined between two smooth hydrophobic walls at

a fixed distance of 8.5Å. The water-wall interaction was governed by a Lennard-Jones 9-3 potential

with σ = 3.56 Å andǫ = 0.569 kJ mol−1 [7]. We simulated systems composed ofN = 256 water

molecules confined between two parallel plates of sizeL× L, whereL is a length varying between

31.2 and 35.8 Å. Periodic boundary conditions were applied in lateral directions. 32 replicas were

used in gREM simulations to cover temperature fromT1 = 200K toT32 = 320K.

D. Water structure analysis

We calculated the lateral radial distribution function (RDF) gxy(r) versus the lateral positionrxy

parallel to the confining plates. The lateral RDF is defined by [11]

gxy(r) =
1
ρ2V

∑

i, j

δ(r − r i j )[θ(|zi − zj | + δz/2)− θ(|zi − zj | − δz/2)], (9)

whereV is the volume,r i j is the lateral distance between coarse-grained moleculesi and j, z is

thez coordinate, andδ(x) is the Diracδ function. The Heaviside functionθ(x) restricts the sum to

pairs within the same layer.

The lateral static structure factorS(q) is the Fourier transform of the lateral radial distribution

functiongxy(r) [48, 49] according to

S(Q) = 1+ 2πρ
∫ L

0
r

(

sin(qr)
qr

)

[g(r) − 1]dr. (10)

The wave vectorq is defined asq = 2πk/L, wherek is an integer that ranges from 1 toN, the total

number of water molecules, andL is the length of the simulation box.

E. Basin-hopping global optimization

Basin-hopping (BH) global optimization [50, 51], as implemented in theGMIN [52] package,

was used to explore the potential energy landscape. The BH scheme used in this work is as follows:

1. a random Cartesian displacement is applied to the initial coordinates,ri;
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2. the perturbed coordinates,r
′
i , are quenched to the local minimum,rn;

3. the new configuration,rn, is accepted with probability

p(i → n) = min(1,e−β∆E)

where∆ = En − Ei, Ei andEn are the energies of the initial and new configurations, and

β = 1/kT.

6×103 BH steps were run for each starting structure. At each step, random Cartesian displacements

up to 0.8 Å were applied to each particle. The temperature parameterT was fixed at 8.0 kJ mol−1.

Local optimization was performed using a modified version ofNocedal’s limited memory BFGS

(L-BFGS) minimizer[53, 54]. The root-mean-square gradientof the local minima was converged

to 10−4 kJ mol−1 Å−1.

III. RESULTS AND DISCUSSION

gREM utilizes optimally designed effective temperaturesTα(E) ensuring that unstable or

metastable energy states of the canonical ensemble in the S-bend region are transformed into

stable states having a unimodal probability distribution function (PDF).

To implement gREM, a necessary and sufficient condition onTα(E; λα) is derived by identifying

an extremum,E∗α, of a generalized free energy density,βFα(E) = wα(E) − S(E), as

Tα(E
∗
α; ξα) = TS(E∗α) = T∗α, (11)

whereTS(E) = [∂S/∂E]−1 is the statistical temperature andE∗α is the crossing point betweenTα(E)

andTS(E). The stability condition

βF ′′α (E∗α) = (γS − γα)/T
∗
α

2
, (12)

whereγS = T′S(E∗α) andγα = T′α(E
∗
α), and the prime denotes differentiation with respect toE,

ensures the creation of a unimodal probability distribution function, i.e.,Pα(E) = e−βFα . For the

unique crossing pointE∗α, betweenTS(E) andTα(E; λα), we demonstrated thatγα(E∗α) < γS(E∗α).

For linear effective temperatures,γα is a constant equal toγ0.

ExpandingPα(E) to second order atE∗α results in

Pα(E; γα) ≈ exp[−(E − E∗α)
2/2σγ], (13)

whereσγ = T∗α
2/(γS − γα), generates a Gaussian PDF centered atE∗α with γα(E∗α) < γS(E∗α).

6



Fig. 1(a) demonstrates that the linear effective temperaturesTα(E) form unique crossing points

E∗α with statistical temperatureTS(E) across the transition region, whereTS(E) displays S-bends.

The parameters inTα(E; λα) = λα+γ0(E−E0) areE0 = −43.5 kJ mol−1, λ1 = 200 K,λ32 = 427.6 K,

andγ0 = −0.101 mol K kJ−1. The slope of the linear effective temperatures,γ0, is more negative

than the slope of the S-bend part ofTS(E), fulfills the condition thatγα(E∗α) < γS(E∗α). The

resulting GPDFs in Fig. 1(b) are localized aroundE∗α with a Gaussian shape, and naturally bridge

between ordered and disordered phases with unimodal energydistributions across the transition

region. The results shown in Figs. 1 to 3 are from the system ofbox length 35.8 Å.

In the S-bend region forTS(E), two different energy states can have the same temperature yet

have different structures[13]. In order to characterize differing structured states in this nanocon-

fined water system, we computed the lateral radial distribution function and structure factor.

For the system in Fig. 1, replica 18 and 25 have the same statistical temperatureTS(E) =

288.8 K, but replicas 18 and 25 are on the branch of solid and liquidcharacterized by the lateral

radial distribution function and structure factor. (See Fig. 2.) The RDFs of replica 18 and 25 are

quite different in terms of the magnitude of the peaks, and the number ofpeaks, as only three peaks

are visible in replica 25. The structure factor of replica 18displays a prepeak atq ≈ 2, a sharp first

peak, and a split second peak, in comparison withS(q) for replica 25. The difference of RDFs

and structure factors shows the solid-like and liquid-likecharacteristics of the configurations in

replica 18 and 25, respectively, implying the coexistence of these structurally distinct states in the

canonical ensemble.

A sufficiently long simulation with gREM produces the entropy estimate,S(E), by combining

results from multiple replicas via ST-WHAM. Once the entropyis determined, canonical thermo-

dynamic properties including internal energyU(T) and heat capacityCv(T), can be calculated as

in Eq. (7) and (8). As shown in Fig. 3 (a), the internal energy increases with temperature mono-

tonically across the phase transition region, as a result ofreweighting gREM derived caloric curve

into the canonical ensemble. The heat capacityCv in canonical ensemble shows a sharp peak at the

melting temperatureTm in Fig. 3(a). The free energy density,F (E,T) = E−TS(E), at the melting

temperatureTm exhibits two local minima atE1 = −38.1 andE3 = −40.5 kJ mol−1 and one local

maximum atE2 = −39.5 kJ mol−1. The canonical probability density function,PT(E) ∝ e−βF (E,T),

shows two maxima atE1 andE3, and a minimum atE2. E1 andE3 correspond to two metastable

states andE2 corresponds to an unstable state. The bimodal structure inPT(E) demonstrates the in-

trinsic instability of the canonical ensemble in sampling across the transition region in the vicinity
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of a first-order phase transition [15–18].

We also performed gREM simulations for systems of varying size and used ST-WHAM to

compute canonical properties such as the internal energy and heat capacity shown in Fig. 4. The

canonical internal energies,E(T), increase monotonically with temperature with a smooth jump

in E(T) near the melting temperature. The transitions in the larger systems are more abrupt, as

shown by theE(T) curves and the sharp peaks in heat capacity.

Local minima for systems 1 to 6 were produced by the GMIN package using basin-hopping

global optimization [55–57]. The structure of system 1 is composed mostly of pentagons. As

the system size increases from 2 to 6, hexagons become the dominant element, with a significant

number of pentagons and heptagons.

IV. CONCLUSION

In this work, we demonstrated the applicability of gREM in simulating the solid-liquid phase

transition of bilayer water nanofilms using a monatomic water model. By utilizing a linear ef-

fective temperature instead of the canonical temperature,gREM avoids an intrinsic instability of

the canonical ensemble in the negative slope region of the statistical temperature accompanying

the first-order phase transition. The linear effective temperatures of all replicas were optimized

to form unique and stable crossing points with the statistical temperature, resulting in unimodal

probability density functions (PDFs) across the phase transition region. Due to the S-bend in

the statistical temperature of systems displaying first-order phase transitions, the canonical tem-

perature lacks a one-to-one mapping with energy, and the canonical ensemble may obscure the

existence of different states with the same canonical temperature. gREM can resolve these states

because it uses energy as the dynamical variable, and samples uniformly from the low energy

states to the high energy state with unimodal PDFs. We further examined two states with the same

canonical temperature to compare their radial distribution functions and structure factors, which

show the solid-like and liquid-like features of the two energy states.

ST-WHAM was used to reweight the gREM simulation results to canonical ensemble so that the

thermodynamic variables at canonical temperature can be estimated. The internal energy and heat

capacity as a function of temperature were computed and melting temperatures were identified.

At the melting temperature, the Helmholtz free energy has double minima and the PDF exhibits

a bimodal structure, implying that the transition states are intrinsically unstable in the canonical
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ensemble[13]. The heat capacities and internal energies ofsystems with varying sizes were com-

puted through gREM simulations and the ST-WHAM reweighting technique. The structures of

gREM simulations were optimized using the GMIN package and different crystalline structures

are observed for systems with different sizes.
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FIG. 1: (a) Effective temperaturesTα(E) (a set of parallel lines with negative slope) form unique crossing
points (black open squares) with the statistical temperatureTS(E) (black curve), (b) generalized probability
distributions functionsPα(E) of corresponding replicasα = 17,18,19, ...,26 of the system with sizeLx =
Ly = 35.8Å.
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FIG. 2: (a) Lateral radial distribution functiongxy(r) and (b) structure factor transformed fromgxy(r) of
replica 18 (red line) and replica 25 (blue line) of the same system as in Fig.1.
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FIG. 3: (a) Energy temperature curve in the canonical ensemble (red line) and molar heat capacityCv(T)
(blue line). (b) Probability distribution functionPT(E) and free energyFT(E) at the melting temperature
Tm.
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FIG. 4: (a) Energy versus temperature curve, E(T), and (b) Molar heat capacity,Cv(T), of system 1 to 6. The
size of system 1 isLx×Ly = 36.03×31.2Å, while for system 2 to 6,Lx = Ly = 34.5,34.8,35.0,35.5,35.8Å.
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FIG. 5: Minimized structure of systems 1 to 6 produced by the GMIN method. The input structure for each
system was the equilibrium structure of the first replica in gREM simulation.
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