8,435 research outputs found

    Advances in induction-heated plasma torch technology

    Get PDF
    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described

    Induction plasma nozzle tests

    Get PDF
    Simulation of nozzle environment in gas core nuclear rocket with induction coupled arc plasma syste

    Guidelines for fabrication of hybrid microcircuits

    Get PDF
    Document is summary of approaches that may be taken in designing hybrid microcircuits similar to those for aerospace application

    Dark-Ages Reionisation & Galaxy Formation Simulation XVI: The Thermal Memory of Reionisation

    Full text link
    Intergalactic medium temperature is a powerful probe of the epoch of reionisation, as information is retained long after reionisation itself. However, mean temperatures are highly degenerate with the timing of reionisation, with the amount heat injected during the epoch, and with the subsequent cooling rates. We post-process a suite of semi-analytic galaxy formation models to characterise how different thermal statistics of the intergalactic medium can be used to constrain reionisation. Temperature is highly correlated with redshift of reionisation for a period of time after the gas is heated. However as the gas cools, thermal memory of reionisation is lost, and a power-law temperature-density relation is formed, T=T0(1+δ)1−γT = T_0(1+\delta)^{1-\gamma} with γ≈1.5\gamma \approx 1.5. Constraining our model against observations of electron optical depth and temperature at mean density, we find that reionisation likely finished at zreion=6.8−0.8+0.5z_{\rm{reion}} = 6.8 ^{+ 0.5} _{-0.8} with a soft spectral slope of α=2.8−1.0+1.2\alpha = 2.8 ^{+ 1.2} _{-1.0}. By restricting spectral slope to the range [0.5,2.5][0.5,2.5] motivated by population II synthesis models, reionisation timing is further constrained to zreion=6.9−0.5+0.4z_{\rm{reion}} = 6.9 ^{+ 0.4} _{-0.5}. We find that, in the future, the degeneracies between reionisation timing and background spectrum can be broken using the scatter in temperatures and integrated thermal history.Comment: 17 pages, 17 figures, Accepted for publication in MNRA

    Expectation of Gifted Children in the Primary-Secondary Transition.

    Get PDF
    Despite the comprehensiveness of the creativity literature, there are few studies that deal directly with the perceptions of creative children in their everyday concerns. Increasingly, however, educators are turning to ethnomethodology as providing wider and more appropriate knowledge for their purposes

    Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well

    Full text link
    Direct electron spin resonance (ESR) on a high mobility two dimensional electron gas in a single AlAs quantum well reveals an electronic gg-factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin orbit-interaction and a modulation of the electron wavevector caused by the microwave electric field. This contrasts markedly to conventional ESR that detects through the microwave magnetic field.Comment: 4 pages, 4 figure

    Coplanar stripline antenna design for optically detected magnetic resonance on semiconductor quantum dots

    Full text link
    We report on the development and testing of a coplanar stripline antenna that is designed for integration in a magneto-photoluminescence experiment to allow coherent control of individual electron spins confined in single self-assembled semiconductor quantum dots. We discuss the design criteria for such a structure which is multi-functional in the sense that it serves not only as microwave delivery but also as electrical top gate and shadow mask for the single quantum dot spectroscopy. We present test measurements on hydrogenated amorphous silicon, demonstrating electrically detected magnetic resonance using the in-plane component of the oscillating magnetic field created by the coplanar stripline antenna necessary due to the particular geometry of the quantum dot spectroscopy. From reference measurements using a commercial electron spin resonance setup in combination with finite element calculations simulating the field distribution in the structure, we obtain an average magnetic field of ~0.2mT at the position where the quantum dots would be integrated into the device. The corresponding pi-pulse time of ~0.3us fully meets the requirements set by the high sensitivity optical spin read-out scheme developed for the quantum dot

    Magnetic susceptibility of ultra-small superconductor grains

    Full text link
    For assemblies of superconductor nanograins, the magnetic response is analyzed as a function of both temperature and magnetic field. In order to describe the interaction energy of electron pairs for a huge number of many-particle states, involved in calculations, we develop a simple approximation, based on the Richardson solution for the reduced BCS Hamiltonian and applicable over a wide range of the grain sizes and interaction strengths at arbitrary distributions of single-electron energy levels in a grain. Our study is focused upon ultra-small grains, where both the mean value of the nearest-neighbor spacing of single-electron energy levels in a grain and variations of this spacing from grain to grain significantly exceed the superconducting gap in bulk samples of the same material. For these ultra-small superconductor grains, the overall profiles of the magnetic susceptibility as a function of magnetic field and temperature are demonstrated to be qualitatively different from those for normal grains. We show that the analyzed signatures of pairing correlations are sufficiently stable with respect to variations of the average value of the grain size and its dispersion over an assembly of nanograins. The presence of these signatures does not depend on a particular choice of statistics, obeyed by single-electron energy levels in grains.Comment: 40 pages, 12 figures, submitted to Phys. Rev. B, E-mail addresses: [email protected], [email protected], [email protected]

    Tuning the exciton g-factor in single InAs/InP quantum dots

    Full text link
    Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 1100 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates

    Extraction of Visual Information to Predict Crowdfunding Success

    Full text link
    Researchers have increasingly turned to crowdfunding platforms to gain insights into entrepreneurial activity and dynamics. While previous studies have explored various factors influencing crowdfunding success, such as technology, communication, and marketing strategies, the role of visual elements that can be automatically extracted from images has received less attention. This is surprising, considering that crowdfunding platforms emphasize the importance of attention-grabbing and high-resolution images, and previous research has shown that image characteristics can significantly impact product evaluations. Indeed, a comprehensive review of empirical articles (n = 202) that utilized Kickstarter data, focusing on the incorporation of visual information in their analyses. Our findings reveal that only 29.70% controlled for the number of images, and less than 12% considered any image details. In this manuscript, we review the literature on image processing and its relevance to the business domain, highlighting two types of visual variables: visual counts (number of pictures and number of videos) and image details. Building upon previous work that discussed the role of color, composition and figure-ground relationships, we introduce visual scene elements that have not yet been explored in crowdfunding, including the number of faces, the number of concepts depicted, and the ease of identifying those concepts. To demonstrate the predictive value of visual counts and image details, we analyze Kickstarter data. Our results highlight that visual count features are two of the top three predictors of success. Our results also show that simple image detail features such as color matter a lot, and our proposed measures of visual scene elements can also be useful. We supplement our article with R and Python codes that help authors extract image details (https://osf.io/ujnzp/).Comment: 32 pages, 5 figure
    • …
    corecore