8,886 research outputs found

    Two-step rocket engine bipropellant valve Patent

    Get PDF
    Solenoid two-step valve for bipropellant flow rate control to rocket engin

    Two-step rocket engine bipropellant valve concept

    Get PDF
    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber

    On the formation and decay of a molecular ultracold plasma

    Full text link
    Double-resonant photoexcitation of nitric oxide in a molecular beam creates a dense ensemble of 50f(2)50f(2) Rydberg states, which evolves to form a plasma of free electrons trapped in the potential well of an NO+^+ spacecharge. The plasma travels at the velocity of the molecular beam, and, on passing through a grounded grid, yields an electron time-of-flight signal that gauges the plasma size and quantity of trapped electrons. This plasma expands at a rate that fits with an electron temperature as low as 5 K, colder that typically observed for atomic ultracold plasmas. The recombination of molecular NO+^+ cations with electrons forms neutral molecules excited by more than twice the energy of the NO chemical bond, and the question arises whether neutral fragmentation plays a role in shaping the redistribution of energy and particle density that directs the short-time evolution from Rydberg gas to plasma. To explore this question, we adapt a coupled rate-equations model established for atomic ultracold plasmas to describe the energy-grained avalanche of electron-Rydberg and electron-ion collisions in our system. Adding channels of Rydberg predissociation and two-body, electron- cation dissociative recombination to the atomic formalism, we investigate the kinetics by which this relaxation distributes particle density and energy over Rydberg states, free electrons and neutral fragments. The results of this investigation suggest some mechanisms by which molecular fragmentation channels can affect the state of the plasma

    THE INFLUENCE OF PASSIVE HIP EXTENSION ON RUNNING BIOMECHANICS

    Get PDF
    J. Stoewer1, E. Foch2, M.B Pohl1 1University of Puget Sound, Tacoma, WA; 2Central Washington University, Ellensburg, WA Restricted passive range of motion (PROM) of hip extension has been anecdotally linked with low back pain. A potential mechanism for this may be that restrictions in passive hip extension prevents the hip from fully extending during running. As a consequence, the pelvis may undergo anterior tilt to allow the thigh to extend, thus, resulting in greater loading of the lumbar spine. However, it is currently unclear whether restricted passive hip extension has any bearing on hip and pelvis biomechanics during running. PURPOSE: To determine whether runners who differ in passive hip extension also demonstrate differences in hip extension and anterior pelvic tilt during running. METHODS: Participants included 9 healthy runners (3 males, 6 females) between the ages of 18-28. Passive hip extension was measured using the Thomas Test. Kinematic data during running was collected using a 3D motion capture system. Subjects were split into three groups (tight, normal, & flexible) using tertiles based on their Thomas Test score. Both hip extension and anterior pelvic tilt during running were then compared between groups using Cohen’s effect sizes (ES). RESULTS: The tight group exhibited the least amount of hip extension during running with a large effect size (ES=0.84) when compared to the flexible group (Table 1). The tight group exhibited the greatest amount of anterior pelvic tilt with large effect sizes when compared to both the normal (ES=0.80) and flexible (ES=2.34) groups. CONCLUSION: Limited passive hip extension was linked with alterations in running biomechanics including reduced hip extension and greater anterior pelvic tilt. These kinematic alterations could potentially place greater loading the lumbar spine

    Electron Temperature Evolution in Expanding Ultracold Neutral Plasmas

    Get PDF
    We have used the free expansion of ultracold neutral plasmas as a time-resolved probe of electron temperature. A combination of experimental measurements of the ion expansion velocity and numerical simulations characterize the crossover from an elastic-collision regime at low initial Gamma_e, which is dominated by adiabatic cooling of the electrons, to the regime of high Gamma_e in which inelastic processes drastically heat the electrons. We identify the time scales and relative contributions of various processes, and experimentally show the importance of radiative decay and disorder-induced electron heating for the first time in ultracold neutral plasmas

    Experimental Realization of an Exact Solution to the Vlasov Equations for an Expanding Plasma

    Get PDF
    We study the expansion of ultracold neutral plasmas in the regime in which inelastic collisions are negligible. The plasma expands due to the thermal pressure of the electrons, and for an initial spherically symmetric Gaussian density profle, the expansion is self-similar. Measurements of the plasma size and ion kinetic energy using fluorescence imaging and spectroscopy show that the expansion follows an analytic solution of the Vlasov equations for an adiabatically expanding plasma.Comment: 4 pages, 4 figure

    A current driven instability in parallel, relativistic shocks

    Full text link
    Recently, Bell has reanalysed the problem of wave excitation by cosmic rays propagating in the pre-cursor region of a supernova remnant shock front. He pointed out a strong, non-resonant, current-driven instability that had been overlooked in the kinetic treatments, and suggested that it is responsible for substantial amplification of the ambient magnetic field. Magnetic field amplification is also an important issue in the problem of the formation and structure of relativistic shock fronts, particularly in relation to models of gamma-ray bursts. We have therefore generalised the linear analysis to apply to this case, assuming a relativistic background plasma and a monoenergetic, unidirectional incoming proton beam. We find essentially the same non-resonant instability noticed by Bell, and show that also under GRB conditions, it grows much faster than the resonant waves. We quantify the extent to which thermal effects in the background plasma limit the maximum growth rate.Comment: 8 pages, 1 figur

    Higher dimensional abelian Chern-Simons theories and their link invariants

    Full text link
    The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions 4l+34l+3, whose parameter kk is quantized. The generalized Wilson (2l+1)(2l+1)-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of (2l+1)(2l+1)-loops, first on closed (4l+3)(4l+3)-manifolds through a novel geometric computation, then on R4l+3\mathbb{R}^{4l+3} through an unconventional field theoretic computation.Comment: 40 page

    Host isotope mass effects on the hyperfine interaction of group-V donors in silicon

    Full text link
    The effects of host isotope mass on the hyperfine interaction of group-V donors in silicon are revealed by pulsed electron nuclear double resonance (ENDOR) spectroscopy of isotopically engineered Si single crystals. Each of the hyperfine-split P-31, As-75, Sb-121, Sb-123, and Bi-209 ENDOR lines splits further into multiple components, whose relative intensities accurately match the statistical likelihood of the nine possible average Si masses in the four nearest-neighbor sites due to random occupation by the three stable isotopes Si-28, Si-29, and Si-30. Further investigation with P-31 donors shows that the resolved ENDOR components shift linearly with the bulk-averaged Si mass.Comment: 5 pages, 4 figures, 1 tabl
    • …
    corecore