8,955 research outputs found

    SSDB spaces and maximal monotonicity

    Get PDF
    In this paper, we develop some of the theory of SSD spaces and SSDB spaces, and deduce some results on maximally monotone multifunctions on a reflexive Banach space.Comment: 16 pages. Written version of the talk given at IX ISORA in Lima, Peru, October 200

    New results on q-positivity

    Get PDF
    In this paper we discuss symmetrically self-dual spaces, which are simply real vector spaces with a symmetric bilinear form. Certain subsets of the space will be called q-positive, where q is the quadratic form induced by the original bilinear form. The notion of q-positivity generalizes the classical notion of the monotonicity of a subset of a product of a Banach space and its dual. Maximal q-positivity then generalizes maximal monotonicity. We discuss concepts generalizing the representations of monotone sets by convex functions, as well as the number of maximally q-positive extensions of a q-positive set. We also discuss symmetrically self-dual Banach spaces, in which we add a Banach space structure, giving new characterizations of maximal q-positivity. The paper finishes with two new examples.Comment: 18 page

    Universal parametric correlations in the transmission eigenvalue spectra of disordered conductors

    Full text link
    We study the response of the transmission eigenvalue spectrum of disordered metallic conductors to an arbitrary external perturbation. For systems without time-reversal symmetry we find an exact non-perturbative solution for the two-point correlation function, which exhibits a new kind of universal behavior characteristic of disordered conductors. Systems with orthogonal and symplectic symmetries are studied in the hydrodynamic regime.Comment: 10 pages, written in plain TeX, Preprint OUTP-93-36S (University of Oxford), to appear in Phys. Rev. B (Rapid Communication

    Correlation Functions in Disordered Systems

    Full text link
    {Recently, we found that the correlation between the eigenvalues of random hermitean matrices exhibits universal behavior. Here we study this universal behavior and develop a diagrammatic approach which enables us to extend our previous work to the case in which the random matrix evolves in time or varies as some external parameters vary. We compute the current-current correlation function, discuss various generalizations, and compare our work with the work of other authors. We study the distribution of eigenvalues of Hamiltonians consisting of a sum of a deterministic term and a random term. The correlation between the eigenvalues when the deterministic term is varied is calculated.}Comment: 19 pages, figures not included (available on request), Tex, NSF-ITP-93-12

    Bayesian inversion for finite fault earthquake source models I—theory and algorithm

    Get PDF
    The estimation of finite fault earthquake source models is an inherently underdetermined problem: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are limited to observations at the Earth’s surface. Bayesian methods allow us to determine the set of all plausible source model parameters that are consistent with the observations, our a priori assumptions about the physics of the earthquake source and wave propagation, and models for the observation errors and the errors due to the limitations in our forward model. Because our inversion approach does not require inverting any matrices other than covariance matrices, we can restrict our ensemble of solutions to only those models that are physically defensible while avoiding the need to restrict our class of models based on considerations of numerical invertibility. We only use prior information that is consistent with the physics of the problem rather than some artefice (such as smoothing) needed to produce a unique optimal model estimate. Bayesian inference can also be used to estimate model-dependent and internally consistent effective errors due to shortcomings in the forward model or data interpretation, such as poor Green’s functions or extraneous signals recorded by our instruments. Until recently, Bayesian techniques have been of limited utility for earthquake source inversions because they are computationally intractable for problems with as many free parameters as typically used in kinematic finite fault models. Our algorithm, called cascading adaptive transitional metropolis in parallel (CATMIP), allows sampling of high-dimensional problems in a parallel computing framework. CATMIP combines the Metropolis algorithm with elements of simulated annealing and genetic algorithms to dynamically optimize the algorithm’s efficiency as it runs. The algorithm is a generic Bayesian Markov Chain Monte Carlo sampler; it works independently of the model design, a priori constraints and data under consideration, and so can be used for a wide variety of scientific problems. We compare CATMIP’s efficiency relative to several existing sampling algorithms and then present synthetic performance tests of finite fault earthquake rupture models computed using CATMIP

    Coming to America: Multiple Origins of New World Geckos

    Get PDF
    Geckos in the Western Hemisphere provide an excellent model to study faunal assembly at a continental scale. We generated a time-calibrated phylogeny, including exemplars of all New World gecko genera, to produce a biogeographic scenario for the New World geckos. Patterns of New World gecko origins are consistent with almost every biogeographic scenario utilized by a terrestrial vertebrate with different New World lineages showing evidence of vicariance, dispersal via temporary land bridge, overseas dispersal, or anthropogenic introductions. We also recovered a strong relationship between clade age and species diversity, with older New World lineages having more species than more recently arrived lineages. Our data provide the first phylogenetic hypothesis for all New World geckos and highlight the intricate origins and ongoing organization of continental faunas. The phylogenetic and biogeographical hypotheses presented here provide an historical framework to further pursue research on the diversification and assembly of the New World herpetofauna

    Events, processes, and the time of a killing

    Get PDF
    The paper proposes a novel solution to the problem of the time of a killing (ToK), which persistently besets theories of act-individuation. The solution proposed claims to expose a crucial wrong-headed assumption in the debate, according to which ToK is essentially a problem of locating some event that corresponds to the killing. The alternative proposal put forward here turns on recognizing a separate category of dynamic occurents, viz. processes. The paper does not aim to mount a comprehensive defense of process ontology, relying instead on extant defenses. The primary aim is rather to put process ontology to work in diagnosing the current state of play over ToK, and indeed in solving it

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally
    corecore