710 research outputs found

    Reliability-based design optimization of shells with uncertain geometry using adaptive Kriging metamodels

    Full text link
    Optimal design under uncertainty has gained much attention in the past ten years due to the ever increasing need for manufacturers to build robust systems at the lowest cost. Reliability-based design optimization (RBDO) allows the analyst to minimize some cost function while ensuring some minimal performances cast as admissible failure probabilities for a set of performance functions. In order to address real-world engineering problems in which the performance is assessed through computational models (e.g., finite element models in structural mechanics) metamodeling techniques have been developed in the past decade. This paper introduces adaptive Kriging surrogate models to solve the RBDO problem. The latter is cast in an augmented space that "sums up" the range of the design space and the aleatory uncertainty in the design parameters and the environmental conditions. The surrogate model is used (i) for evaluating robust estimates of the failure probabilities (and for enhancing the computational experimental design by adaptive sampling) in order to achieve the requested accuracy and (ii) for applying a gradient-based optimization algorithm to get optimal values of the design parameters. The approach is applied to the optimal design of ring-stiffened cylindrical shells used in submarine engineering under uncertain geometric imperfections. For this application the performance of the structure is related to buckling which is addressed here by means of a finite element solution based on the asymptotic numerical method

    Reliability-based design optimization using kriging surrogates and subset simulation

    Full text link
    The aim of the present paper is to develop a strategy for solving reliability-based design optimization (RBDO) problems that remains applicable when the performance models are expensive to evaluate. Starting with the premise that simulation-based approaches are not affordable for such problems, and that the most-probable-failure-point-based approaches do not permit to quantify the error on the estimation of the failure probability, an approach based on both metamodels and advanced simulation techniques is explored. The kriging metamodeling technique is chosen in order to surrogate the performance functions because it allows one to genuinely quantify the surrogate error. The surrogate error onto the limit-state surfaces is propagated to the failure probabilities estimates in order to provide an empirical error measure. This error is then sequentially reduced by means of a population-based adaptive refinement technique until the kriging surrogates are accurate enough for reliability analysis. This original refinement strategy makes it possible to add several observations in the design of experiments at the same time. Reliability and reliability sensitivity analyses are performed by means of the subset simulation technique for the sake of numerical efficiency. The adaptive surrogate-based strategy for reliability estimation is finally involved into a classical gradient-based optimization algorithm in order to solve the RBDO problem. The kriging surrogates are built in a so-called augmented reliability space thus making them reusable from one nested RBDO iteration to the other. The strategy is compared to other approaches available in the literature on three academic examples in the field of structural mechanics.Comment: 20 pages, 6 figures, 5 tables. Preprint submitted to Springer-Verla

    Optimisation sous contrainte de fiabilité d une coque imparfaite

    Get PDF
    National audienceSee http://hal.archives-ouvertes.fr/docs/00/59/27/95/ANNEX/r_S5P52J4K.pd

    Force and energy dissipation variations in non-contact atomic force spectroscopy on composite carbon nanotube systems

    Full text link
    UHV dynamic force and energy dissipation spectroscopy in non-contact atomic force microscopy were used to probe specific interactions with composite systems formed by encapsulating inorganic compounds inside single-walled carbon nanotubes. It is found that forces due to nano-scale van der Waals interaction can be made to decrease by combining an Ag core and a carbon nanotube shell in the Ag@SWNT system. This specific behaviour was attributed to a significantly different effective dielectric function compared to the individual constituents, evaluated using a simple core-shell optical model. Energy dissipation measurements showed that by filling dissipation increases, explained here by softening of C-C bonds resulting in a more deformable nanotube cage. Thus, filled and unfilled nanotubes can be discriminated based on force and dissipation measurements. These findings have two different implications for potential applications: tuning the effective optical properties and tuning the interaction force for molecular absorption by appropriately choosing the filling with respect to the nanotube.Comment: 22 pages, 6 figure

    Assessment of left ventricular recovery in Tako-Tsubo cardiomyopathy using 2D strain echocardiography

    Get PDF
    Contre la désertification De la convention internationale à l'élaboration participative des programmes d'action nationaux Comme toutes les conventions internationales, la convention sur la désertification est un texte consensuel qui n'indique pas de façon explicite comment mettre en oeuvre toutes ses dispositions. Pourtant, chaque pays affecté est tenu d'élaborer et d'appliquer des programmes d'action nationaux qui doivent être appliqués par les acteurs les plus concernés, les communautés locales. Cet ouvrage propose une démarche pour l'élaboration participative de ces programmes d'action. Il est la synthèse des résultats et des recommandations de la Conférence sous-régionale de vulgarisation de la Convention de lutte contre la désertification et de mise en oeuvre du Plan d'action du RIOD (Réseau international des ONG sur la désertification) en mai 1996. Cette conférence s'inscrivait dans une série de quatre rencontres sous-régionales préconisées afin de faire connaître la convention à un plus grand nombre d'acteurs. Masse Lo - Yacine Diagne - Emmanuel Seck - Série Etudes et recherches n° 190-191 ISBN : 92-9130-0187 - Enda-Editions - Boîte Postale 3370 - Dakar - SENEGAL Tél.: (221) 22-42-29 Télécopie : (221) 23-51-57 E-mail : [email protected]. Prix : 100 FF frais de port inclus pour les pays du Nord - 2 000 FCFA (frais de port : 800 FCFA) pour les pays du SudDe la convention international

    Absorption spectrum in the wings of the potassium second resonance doublet broadened by helium

    Full text link
    We have measured the reduced absorption coefficients occurring in the wings of the potassium 4S-5P doublet lines at 404.414 nm and at 404.720 nm broadened by helium gas at pressures of several hundred Torr. At the experimental temperature of 900 K, we have detected a shoulder-like broadening feature on the blue wing of the doublet which is relatively flat between 401.8 nm and 402.8 nm and which drops off rapidly for shorter wavelengths, corresponding to absorption from the X doublet Sigma+ state to the C doublet Sigma+ state of the K-He quasimolecule. The accurate measurements of the line profiles in the present work will sharply constrain future calculations of potential energy surfaces and transition dipole moments correlating to the asymptotes He-K(5p), He-K(5s), and He-K(3d).Comment: 2 figure

    A generalization of Snoek's law to ferromagnetic films and composites

    Get PDF
    The present paper establishes characteristics of the relative magnetic permeability spectrum μ\mu(f) of magnetic materials at microwave frequencies. The integral of the imaginary part of μ\mu(f) multiplied with the frequency f gives remarkable properties. A generalisation of Snoek's law consists in this quantity being bounded by the square of the saturation magnetization multiplied with a constant. While previous results have been obtained in the case of non-conductive materials, this work is a generalization to ferromagnetic materials and ferromagnetic-based composites with significant skin effect. The influence of truncating the summation to finite upper frequencies is investigated, and estimates associated to the finite summation are provided. It is established that, in practice, the integral does not depend on the damping model under consideration. Numerical experiments are performed in the exactly solvable case of ferromagnetic thin films with uniform magnetization, and these numerical experiments are found to confirm our theoretical results. Microwave permeability measurements on soft amorphous films are reported. The relation between the integral and the saturation magnetization is verified experimentally, and some practical applications of the theoretical results are introduced. The integral can be used to determine the average magnetization orientation in materials with complex configurations of the magnetization, and furthermore to demonstrate the accuracy of microwave measurement systems. For certain applications, such as electromagnetic compatibility or radar absorbing materials, the relations established herein provide useful indications for the design of efficient materials, and simple figures of merit to compare the properties measured on various materials

    Structure of diethylmalonic acid

    Full text link
    corecore