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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52701483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-cea.archives-ouvertes.fr/cea-00175996v2


Crit_skin_LL31.doc p. 1 28/11/2007 

A generalization of Snoek’s law to ferromagnetic films and 
composites 

 
O. Acher*, S. Dubourg 
 
CEA Le Ripault, BP16, 37260 Monts, France 
Received () 
PACS 75.40.Gb ; 76.50.+g ; 77.84.Lf ; 84.40.-x 
 
 
Abstract: 
 
The present paper establishes characteristics of the relative magnetic permeability 

spectrum µ(f) of magnetic materials at microwave frequencies. The integral ∫
∞

0

.).('' dfffµ  of 

the imaginary part of µ(f) multiplied with the frequency f gives remarkable properties. A 
generalisation of Snoek’s law consists in this quantity being bounded by the square of the 
saturation magnetization multiplied with a constant. While previous results have been 
obtained in the case of non-conductive materials, this work is a generalization to 
ferromagnetic materials and ferromagnetic-based composites with significant skin effect. The 
influence of truncating the summation to finite upper frequencies is investigated, and 
estimates associated to the finite summation are provided. It is established that, in practice, the 
integral does not depend on the damping model under consideration. Numerical experiments 
are performed in the exactly solvable case of ferromagnetic thin films with uniform 
magnetization, and these numerical experiments are found to confirm our theoretical results. 
Microwave permeability measurements on soft amorphous films are reported. The relation 

between ∫
GHz

dfffµ
6

0

.).(''  and sMπ4  is verified experimentally, and some practical applications 

of the theoretical results are introduced. The integral can be used to determine the average 
magnetization orientation in materials with complex configurations of the magnetization, and 
furthermore to demonstrate the accuracy of microwave measurement systems. For certain 
applications, such as electromagnetic compatibility or radar absorbing materials, the relations 
established herein provide useful indications for the design of efficient materials, and simple 
figures of merit to compare the properties measured on various materials. 

 
I. INTRODUCTION 

 
The microwave permeability µ of magnetic materials is a quantity of interest both with 

respect to applied and fundamental points of views. High frequency inductors,1 magnetic 
recording write heads, broadband skin antennas,2 microwave filters,3,4 noise suppressors5 and 
Radar Absorbing materials6,7 require high broadband permeability levels at elevated 
frequencies. However, it has been known since the work of Snoek8 that there exist tradeoffs 
between high permeability levels and operation at elevated frequencies, i.e. the higher the 
resonance frequency F0, the lower is the low frequency permeability µ’0. In a bulk 
polycrystalline material, Snoek’s law is written as  

 ( ) sMFµ πγ 4
3
21' 00 =−  (1) 



Crit_skin_LL31.doc p. 2 28/11/2007 

where 4πMs is the saturation magnetization, and OeMHz /32/ ≈= πγγ  the gyromagnetic 
factor. The tradeoffs between the permeability level and the resonance frequency depend on 
the shape of the magnetic domains or particles9,10 For soft thin films with uniform uniaxial in-
plane anisotropies, the equation becomes  

 ( ) ( )22
00 41' sMFµ πγ=− . (2) 

These relations are easily established from the gyromagnetic permeability of a saturated 
ellipsoid. However, they become invalid for heterogeneous magnetic materials, or in the case 
of composites. In addition, they provide no clue to the linewidth of the permeability.  

Recently11,12 another expression of the tradeoffs between permeability levels and frequency 
has been established13  

 ( )2

0

4
2

.).('' sA Mkdfffµ πγπ
=∫

∞

, (3) 

Here, kA is a dimensionless factor associated with the distribution of the orientation of the 
magnetization in the sample. This sum law finds its root in the causality principle, associated 
with the fundamental equation of gyromagnetic motion. For uniform soft thin films, kA=1. For 
bulk sintered ferrites, kA=1/3. For isotropic composite materials with a volume fraction τ of a 
magnetic filler, 3/τ≤Ak . In any case, 1≤Ak . The ratio kA is easily determined from 
experimental data, and can be used to quantify the quality of thin films for microwave 
applications13 and to guide their design.14 Eq. (3) has also been found useful as an indication 
for the conception of microwave absorbers.15 In this case, µ’’ is a quantity of direct interest. 

Eq. (3) has a different form as compared to the original Snoek’s law given by Eq. (1) and 
its extension to thin films given by Eq. (2). However, strong connections exist between these 
identities. According to Eq (3), the higher the resonance frequency (generally corresponding 
to the peak of µ’’), the lower is the bandwidth multiplied by the maximum µ’’ levels.  

For materials with a permeability that coincides with the gyromagnetic permeability of a 
saturated ellipsoid, Snoek’s law in its discrete form (i.e. Eqs. (1), (2)) may be a more 
straightforward expression of the balance between high permeability levels and operation at 
high frequencies as opposed to Eq. (3).16 However, in many cases, Snoek’s law does not apply 
in its discrete form whereas Eq. (3) remains valid. As a consequence, Eq. (3) can be 
considered as a generalization of Snoek’s law. Hexagonal ferrites used in microwave 
applications are not soft materials in the sense that their out-of-plane anisotropy field is 
comparable or larger than the saturation magnetization. Thus, Eq. (3) does not apply to 
hexagonal ferrites, but a more general integral relation has been proposed and verified 
experimentally.17  

The purpose of this paper is to provide significant extensions for Eq. (3). In its original 
derivation,12 the effect of the conductivity on the permeability has been neglected. This is a 
significant limitation, since skin effect due to finite conductivity may substantially affect the 
permeability of ferromagnetic materials. An important result reported in this paper is that the 
integral of µ’’(f).f is hardly affected by moderate skin effect, and slightly decreases when the 
skin effect becomes larger. Another limitation of Eq. (3) concerns the model used to describe 
the magnetic damping. This identity was established assuming a damping mechanism used in 
the equations of Bloch-Bloembergen. The present study demonstrates that it also holds true 
when the Gilbert description of the magnetization relaxation is employed. 

When the integral in the left-hand side of Eq. (3) is determined from experimental 
permeability measurements, it has to be truncated to a finite upper frequency within the 
measurement range. This paper provides estimates of upper integration frequencies that can 
be used with negligible error, as well as simple estimates for the truncation error.  

The paper is organized as follows. In part II, the theoretical approach is outlined and 
general results are presented. Analytical details are given in the appendix. In part III, results 
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are formulated for particular cases, namely thin films, multilayers, and composite materials. 
In part IV, the relevancy of the approximations is verified through numerical experiments on 
an exactly solvable case. In part V, our theoretical findings are confronted with experimental 
values of permeabilities measured on thin films. Ultimately, the potential applications of our 
findings are discussed in part VI. 

 
II. THEORETICAL APPROACH 

 
 A. Permeability of an ellipsoid with uniform magnetization 
 
The magnetic susceptibility tensor of an ellipsoid with a uniform magnetization is well 

known.18 Several models have been proposed for the damping mechanism. The Landau-
Lifschitz-Gilbert expression figuring the dimensionless damping parameter α is one of the 
most popular. The full expression of µG is given in the appendix, see Eq. (A1). It depends on 
the saturation magnetization 4πMs of the material, on the demagnetizing coefficients of the 
ellipsoid Nx, Ny, Nz, and on the resonance frequency F0. It is convenient to introduce the 
quantity sM MF πγ 4= which has the dimension of frequency.  

 
 B. Influence of skin effect on the permeability 
 
The permeability of a conductive inclusion depends on its conductivity, shape and 

dimensions, and of course on the permeability of the constitutive material. It has been derived 
within many independent studies, and for numerous shapes. The permeability of the inclusion 
can be written as6,19,20,21,22 

 )(. kaAµµ G= , (4) 
where µG is the intrinsic permeability of the material, k the wavevector associated to the 

microwave excitation inside the inclusion, and a the radius of the inclusion (in the case of a 
sphere and a cylinder) or its half thickness (in the case of a plate). k depends implicitly on the 
permeability µG and the conductivity σ of the material. The expression of A(ka) for various 
inclusion shapes is presented in Fig. 1. Though the expressions may appear dissimilar at first 
sight, their first order development in ka has the same form 

 ( )
p
akkaA

2.1)( +=  + higher order terms (5) 

Here, p is a number that depends on the shape of the inclusion. It can be seen in Fig. 1 that 
p is larger for a sphere (p=10) than for a plate (p=3), and for a cylinder, its value is 
somewhere in between. This suggests that Eq. (5) can be extended to a variety of regular 
shapes, and that it is fairly general. 

 
 C. Derivation of the integral bound 

 
As a consequence of the causality principle, the permeability µ function of the complex 

variable f is analytic in the lower half of the f-plane.23 The Cauchy theorem is applied to the 
quantity f.µ(f) on a closed contour consisting in the [-F, +F] segment of the real axis and the 
half circle C- defined by F.exp(jθ), θ  ranging from 0 to π. This yields  

 0.).(.).( =+ ∫∫
−− C

F

F

dfffµdfffµ . (6) 

The first term in Eq. (6) can be transformed using the general properties )()( fµfµ =− , 
where the bar corresponds to the conjugate. This yields an integral of µ’’(f).f. The second term 
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can be transformed into an integral on the angular coordinate θ of the semicircle C-. This is 
relatively easy to calculate provided that F is large enough, but not too large, and is a result of 
good approximations of µ being available at high frequencies F. Detailed calculations are 
shown in the appendix. One finds 

 

 [ ]2

0

''( ). . . 1
2

F

y Mµ f f df N F t s eπ
≈ − − ±∫ , (7) 

where t and s are small positive numbers, and t corresponds to the finite truncation whereas 
s is related to skin effect. The term e is the error induced by the measurement and Δµ the 
uncertainties with respect to µ. 

 ( )
F

FNNt M
yx += 22 α

π
 (8) 

 

 
F

FN
p
aµs M

y

22
04 σ

=  (9) 

 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Δ
≤

My F
F

N
µe

π
. (10) 

Here, µ0 is the permeability of vacuum. The validity of Eqs. (7) through (10) requires that 
the upper summation frequency F verifies the conditions in the first 4 lines of Table I. For 
most microwave magnetic materials, the permeability can be measured in the appropriate 
spectral range using conventional measurement systems, as will be evidenced in sections IV 
and V. Table I also indicates under which conditions the corrective terms t, s or e are 
negligible. In the case where they are small but not negligible, they can be determined from 
the analytical expression above. 

 
D. A generalization to magnetic materials with complex magnetization states and to 

composites 
Let us now deal with materials in demagnetized states. For this purpose, we consider 

magnetic matter constituted of a collection of magnetic domains with various shapes. Each 
magnetic domain can be described as a saturated ellipsoid, with possibly differing 
demagnetizing coefficients and internal fields. Let us also allow some non-magnetic matter. 
All the inclusions are supposed to be much smaller than the wavelength. The permeability of 
this complex matter can be determined through an appropriate homogenization law. In 
practice, the difficulty is that the homogenization law depends not only on the permeability of 
each domain, but also on the details of their geometries and arrangement. In cases where only 
the permeabilities of the constituents are known, but not the exact topology, it is not possible 
to precisely determine the permeability µeff of the homogenized medium. It is nevertheless 
possible to know certain bounds on the complex values of µeff. Different sets of bounds, 
known as Wiener, Hashin-Shtrikman and Milton-Bergman bounds,24,25,26,27 have been 
derived, depending on the partial information available. At very high frequencies, the 
permeability µi(F) of each constituent is close to unity. In this case, all bounds converge to a 
single value of µeff that is independent of the composite topology: 12,28  

 )()(.)( FµFµFµ i
i

iieff =≈ ∑τ , (11) 

where τi designates the volume fraction of each domain labelled i, and  corresponds to a 
volume average. Eq. (11) is also valid for any complex frequency on the semicircle C-. Using 
this result in Eq. (6), one finds: 
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 ∫∑∫ =
F

i
i

i

F

eff dfffµdfffµ
00

.).(''.).('' τ . (12) 

This identity is similar to Eq. (20.6) in ref. [24], and constitutes a very important result: the 
integral associated to the composite medium is simply the linear average of the integral 
associated to each constituent. 

 
 E. Isotropic composites made of ferromagnetic loads in a dielectric matrix 

 
In an isotropic material, 3/)( zyxeff µµµµ ++= . The integral 3/)( ,,, iziyix µµµ ++  can be 

easily calculated for each ellipsoid, and then averaged on the whole sample by using Eq. (12). 
The volume fraction of magnetic particles is denoted τ, and the average of the demagnetizing 
coefficients of the domains along their magnetization is denoted //N . //N  is expected to 
be small as compared to unity, since the magnetization tends to be aligned in the elongation 
direction in soft materials. The demagnetizing coefficient in the elongation direction of an 
ellipsoid is close to zero for large aspect ratios,18 and it will therefore be treated as a first order 
correction. We obtain from Eqs. (7) and (12): 

 ( ) ( )2
//

0

''( ). . 4 1
6

F

sµ f f df M N t s eπ τ γ π≈ − − − ±∫  (13) 

 
with 

 ( )
F

Ft Mηα
π

+= 12  (14) 

where zx NN .2=η  is the average of the product of the demagnetizing coefficients 
normal to the magnetization. This term is comprised between 0 and ½.  

It is important to note that s does not depend on the internal fields, which suggests that for 
a multi-domain particle with half radius a and shape parameter p, Eq. (9) is still the 
appropriate expression for s, provided that an averaging on Ny is performed. In practical cases, 
there may be a significant dispersion in radius a within the magnetic filler, while its 
conductivity σ remains constant. It thus follows that 

 ( ) ( )
F

F
p

aµ
s M

22
0 1

4
η

σ
−= . (15) 

The absolute error due to measurement uncertainties is bounded by 2

2
FµΔ , and a 

majoration of the relative error e can be written as : 

 
2

3
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Δ
≤

MF
Fµe

τπ
. (16) 

 
III. RESULTS 

 
Eqs. (13) to (15) are very general and only valid when the upper integration frequency F is 

chosen in the proper range as summarized in the four first lines in Table I. It is useful to 
rewrite these equations for a few cases of particular interest, in order to provide ready-to-use 
expressions.  
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 A. Application to soft thin films with uniform magnetization 
 
In the case of a uniaxial thin film magnetized along the z direction with in-plane 

orientation, the demagnetizing coefficient normal to the film plane Ny is unity. The hard axis 
permeability (along x) has the following properties: 

 ( ) [ ]estMdfffµ s

F

±−−≈∫ 1.4
2

.).('' 2

0

πγπ , (17) 

with 

 
F
M

t sπγ
α

π
42

= , (18) 

 

 
( )

F
Maµ

s s
22

0 4
.

3
4 πγσ

= , (19) 

 
2

4 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Δ
≤

sM
Fµe
πγπ

, (20) 

 
where 2a it the thickness of the film. When measurement errors are neglected, it follows in 

a straightforward manner that : 

 ( )2

0

4
2

.).('' s

F

Mdfffµ πγπ
≤∫ . (21) 

This generalizes previous results11,12 to the case where a significant skin effect is present, 
provided that the summation is performed up to a reasonably high frequency. This 
demonstrates that skin effect cannot increase the factor of merit13 kA defined in Eq. (3). 
Indeed, the presence of skin effect tends to decrease kA, but only as a first order correction. 
This appears in Eq. (17) where -s is a negative corrective term associated to skin effect.  

The integral in Eqs. (17) and (21) can be easily evaluated from experimental results. The 
upper integration frequency F should be chosen significantly larger than the resonance 
frequency, but smaller than sMπγ 4 .  

The integral is expressed in Hz2, and yields a number that is expected to have a limited 
significance to people working on magnetic materials. It is not easy to know whether the 
integral is large or small as compared to values observed on other microwave materials if it is 
expressed in Hz2. One way to transform the integral into an easily interpreted number is to 

normalize the integral by ( )24
2 sMπγπ . This quantity has been introduced in Eq. (3) as the 

dimensionless parameter kA. As aforementioned, this parameter is convenient to use, but does 
however require a prior determination of the saturation magnetization. Another solution is to 
turn the integral into a quantity that has the dimension of magnetization. This can be carried 
out very easily by taking the square root of the integral, and multiplying it by an appropriate 
constant. Let us define )(FM µ  by: 

 

 ∫=
F

µ dfffµFM
0

.).(''21)(
πγ

 (22) 

 
This quantity can be deduced from the permeability measurements with no other 

knowledge of the magnetic material. For a film with perfect orientation and limited skin 
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effect, this quantity represents the saturation magnetization : Mµ(F)=4πMs. Thus, Mµ(F) 
should be a number with an intuitive signification to people involved in magnetic materials. In 
the general case: 

 
 sµ MFM π4)( ≤  (23) 

 
Since the quantity Mµ(F) has the dimension of a magnetization and is obtained purely from 

dynamic measurements, it may be termed “efficient dynamic magnetization”. It is also 
possible to estimate the saturation magnetization from the integral of the imaginary part of the 
permeability 

 ⎟
⎠
⎞

⎜
⎝
⎛ ±

+
+=

22
1)(4 estFMM µsπ  (24) 

where s, t and e can be easily computed from Eqs. (18)-(20).  
 

 B. Application to soft films with magnetization dispersion and multilayers 
 
Let us consider a multilayer made of thin films with in-plane magnetization, but with the 

possibility of non-uniformities along its thickness. Such non-uniformities may arise from 
differences in anisotropy between the layers,29 from antiferromagnetic coupling,30 or from 
exchange coupling, provided that these fields are much smaller than the saturation 
magnetization. Non-uniformities may also arise from unwanted phenomena31, or interfacial 
anisotropies. Let us also allow a certain non-uniformity within the film plane, provided that 
the demagnetization coefficient normal to the film plane remains close to unity. The angle 
between the x direction in the film plane and the magnetization is denoted φ. Then, neglecting 
measurement errors, the permeability µx along x has the following properties: 

 ( ) [ ]stMdfffµ s

F

x −−=∫ 14.sin
2

.).('' 22

0

πγφπ . (25) 

It follows that the integral of µ’’ can be a very useful tool to obtain insights regarding the 
orientation of the magnetization within multilayers. In the case where sMπ4 is uniform within 
the film but the orientation fluctuates, it is possible to get information on the orientation from 
permeability measurements along the x and z directions in the film plane: 

 

∫

∫
= F

z

F

x

dfffµ

dfffµ

0

0
2

2

.).("

.).("

cos

sin

φ

φ
. (26) 

Though the permeability spectra along different directions are expected to be significantly 
influenced by the detailed topology of the magnetization dispersion, the ratio of integrals 
provides simple numerical indications on the average values of φ2sin  and φ2cos . This ratio 
has already been used in order to assess the effect of field annealing on the orientation of the 
magnetization.32 The result presented here extends the validity of the method to thicker films. 

Multilayers have also been designed to provide both magnetic softness and high saturation 
magnetization, by alternating materials with different saturation magnetization but with the 
same uniaxial in-plane orientation.29 In this case 

 ( ) [ ]estMdfffµ
n

nsn

F

x ±−−= ∑∫ 14
2

.).('' 2
,

0

πγτπ . (27) 
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where τn is the volume fraction of material with a saturation magnetization of nsM ,4π . The 
corrective terms can be easily expressed from Eqs. (8)-(10), or neglected in the case where the 
summation is performed up to a sufficiently high frequency. 

 
C. Application to isotropic composites constituted of a magnetic load in a dielectric 

matrix 
Microwave composites made of a magnetic spherical powder dispersed in a dielectric 

matrix are widely used as microwave materials33,34,35 and magnetic absorbers.6,7,15 In most 
cases, the radius of the particles is significant as compared to the skin depth. Eq. (13) 
establishes that  

 ( )2

0

4
6

.).('' s

F

Mdfffµ πγτπ
≤∫ . (28) 

This result has already been theoretically obtained for composites made up of insulating 
materials such as ferrite powders, as well as verified experimentally.12 The present work 
further established that this result remained largely unaffected by finite frequency summation, 
and by skin effect.  

Eq. (15) (where p=10 is used for a sphere) provides useful guidelines for choosing an 
appropriate granulometry <a2> of the particles in order to obtain a small or negligible loss of 
dynamic permeability in the range of interest. The quantity 

 ( ) ⎥⎦
⎤

⎢⎣
⎡= ∫ 2

0
3, 4

6
/.).('' s

F

DA Mdfffµk πγτπ  (29) 

is a dimensionless figure of merit for isotropic composites. The closer it is to unity, the 
better is the material.  

 
IV. NUMERICAL VALIDATION 

 
The aim of this numerical validation was to establish with confidence the exactitude of the 

estimates of the corrective terms  -t, –s. Confirmation was also desired that the terms +S’ and 
+g from Eq. (A17) could be neglected. The validation was performed on conducting thin 
magnetic films with uniform in-plane magnetization. This case was numerically simple, and 
also quite representative of typical measurements on soft ferromagnetic films. The numerical 
experiments were carried out with a precision that could not be attained in real experiments.  

The thin film was described by the following parameters: 4πMs=10 kG, Hk=16 Oe, 
γ =3 GHz/kOe, α=2%, σ=[130 µΩ.cm]-1, Ny=1, which are common values for thin soft 
ferromagnetic films. The resonance frequency was F0=1.2 GHz. The relative permeability 
could be calculated using the Landau-Lifschitz Gilbert equation (Eq. (A1)) and the skin effect 
correction (Eq. (4), with the expression of A(ka) for a plate according to Fig. 1). The 
imaginary part of the permeability is presented in Fig. 2 for thicknesses 2a ranging from 
0.1 µm up to 2 µm. The broadening observed on the spectra of the 1 and 2 µm thick samples 
was due to skin effect. The numerical integration of µ’’(f).f could be easily performed using 
these spectra. 

Table II provides relevant lower and upper frequency bounds on the upper integration 
frequency in the case of the 2 µm thick film. It appears that F=6 GHz is in the adequate range. 

The values of ∫
GHz

dfffµ
6

0

.).(''  obtained both numerically and analytically are displayed, and 

the numerical integration was performed on the spectra shown in Fig. 2. The analytical 
estimate for the integral was obtained using Eq. (17), and the corrective terms were evaluated, 
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both numerically, and analytically using Eq. (18)-(20) and (A18), (A21). It appeared that the 
corrections g and s’ were extremely small, and they could thus be neglected in the following. 
The effect of the truncation –t was to underestimate the integral by approximately 6%, and 
our analytical estimate agreed well with the numerical determination. The skin effect 
correction -s was -19% according to our analytical estimates, which was close to the -23% 
determined in our numerical experiment. In conclusion, the value of the integral predicted 
using our model displayed a deviation of less than 5% from the experimental value, for 
F=6GHz.  

The influence of the upper integration frequency F was also investigated in this numerical 
experiment. The “efficient dynamic magnetization” Mµ(F) defined by Eq. (22) is represented 
in Fig. 3. Though the expression of Mµ(F) may appear less friendly than the integral 

∫
F

dfffµ
0

.).('' , it is very easy to calculate. Moreover, its value has an intuitive interpretation 

and can be compared directly to the saturation magnetization of the material. Numerical 
results were obtained by numerical integration of the permeability calculated using Eqs. (A1) 
and (4), whereas analytical results were established from the saturation magnetization using 
Eq. (24) and the values of s, t and e as computed from Eqs. (18)-(20). The analytical and 
numerical results were in excellent agreement, thus validating our results. For the 0.1 µm 
thick layer, the skin effect was negligible, and as illustrated in the graph, the truncation effects 
decreased when F was increased.  

The effect of measurement uncertainties was also explored. At frequencies much higher 
than the resonance frequency, µ’’ was weak, but could be affected by significant 
measurement uncertainties. On most permeability measurement systems for thin films, errors 
decrease when the thickness of the material increases as a result of a larger amount of 
magnetic material in the cell. For the 0.1 µm thick sample, a typical error Δµ=10 was 
assumed, for the 1 µm thick film, Δµ=2, whereas Δµ=1 for the 2 µm film. The error bar 
associated with the integration is represented in Fig. 3. It can be seen that for the thinner film, 
the upper integration bound should not exceed F=6 GHz to a great extent, in order for Mµ(F) 
not to be significantly affected by the measurement uncertainties. On the thicker films, higher 
upper integration frequencies were possible with a satisfactory precision, but they may not be 
necessary. It was remarkable to see that the integral provided the value of the saturation 
magnetization within 10% if F>3.5 GHz for the 1 µm thick film, and if F>8 GHz for the 2 µm 
thick film. Behind the profound changes in the magnetic losses due to skin effect that can be 

evidenced in Fig. 2, it appears that the integral quantity ∫ dfffµ .).(''  was nearly an invariant.  

 
V. EXPERIMENTAL VALIDATION 

 
Amorphous CoZr thin films were sputter-deposited onto continuously transported 12 µm 

polyethylene teraphtalate substrates. The base pressure inside the chamber before deposition 
was less than 10-6 mbar, and during the process, the Ar pressure was fixed at 5.10-3 mbar. The 
residual magnetron field induced a uniaxial anisotropy parallel to the transportation direction. 
Four samples with various thicknesses, i.e. 0.3, 1.3, 1.7 and 2.1 µm, were fabricated. The 
saturation magnetization 4πMs was measured using a Vibrating Sample Magnetometer, and 
was found to be 11.3 kG ± 0.5 kG. The permeability was determined using a thin film 
permeameter described elsewhere.36 The typical error Δµ was estimated to approximately 20 
for the thinnest film, and to 2 for the thicker ones. 
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The imaginary part of the permeability measured on the 4 films is presented in Fig. 4. The 
thinnest film displayed a highly resonant permeability, and exhibited a secondary peak at 
higher frequency. This peak could be attributed to certain inhomogeneities and the excitation 
of a higher frequency mode.31 The thicker film exhibited a permeability with a very damped 
behaviour, and permeability levels down by a factor up to 4. The “efficient dynamic 
magnetization” Mµ(F) obtained from the experimental spectra using Eq. (22) is represented in 
Fig. 5. As expected, this quantity was close to the saturation magnetization at high frequency. 
Better estimates of the saturation magnetization can be obtained using Eq. (24) with the 
corrections s and t computed from Eqs (18)-(19). These refined estimates are also shown in 
the graph, with their associated error bars. It can be seen that all estimate ranges were 
comprised within the experimental error of the measured 4πMs. A larger measurement 
uncertainty for the thin film permeability as evidenced in Fig. 4 was responsible for a larger 
uncertainty on the integral quantity. This proves that the integral relation on thicker films may 
be very useful in order to obtain more precise experimental data. It is remarkable that, despite 
the strong difference in the four spectra presented in Fig. 4, all the estimates derived using Eq. 
(24) coincided within the experimental errors.  

  
VI. DISCUSSION AND CONCLUSION 

 
Previous studies11,12 have established that, for a given set of assumptions, the quantity 

∫
∞

0

.).('' dfffµ  displays remarkable properties. The present work demonstrates that this is a 

very general result. In addition, it shows that the finite frequency band on which microwave 
permeability measurements are performed generally suffices in order to obtain a good 
estimate of this integral. For materials with magnetic responses significantly influenced by 
skin effect, one may wonder whether it would not be easier to first determine the intrinsic 
permeability from measured permeabilities with skin effect, and subsequently determine the 
integral of the imaginary part of the permeability. Though this procedure is possible, it should 
be underlined that, for magnetic particles constituted of different layers and/or domains with 
varying permeabilities, the intrinsic permeability cannot be rigorously obtained from the 
measurements. In contrast, the estimate of s for the skin effect correction on the integral is 
independent on the detailed magnetic parameters. It depends only on the a2σ product for the 
particle, and as a consequence it is a much more robust parameter. In the case of composites 
made of ferromagnetic powders, there is often a significant size distribution with respect to 
the particles. As a consequence, the intrinsic permeability as determined by the inversion of 
Eq. (4) with an averaged value of a, may have a limited validity, while the integral quantities 
can be exploited. In this case, the averaged value of the corrective term s is directly related to 
< a2>, as expressed by Eq. (15). 

 

The particular properties of ∫
F

dfffµ
0

.).(''  derived in this work may be useful for at least 

three purposes: microwave measurement, microwave design, and material characterization. 
Depending on personal likings, one may prefer to work either with the integral, expressed in 
Hz2; with the dimensionless ratio kA defined in Eq. (3); or with the efficient dynamic 
magnetization Mµ(F) defined by Eq. (22). All properties established for the integral can be 
easily translated into the two other quantities.  

 
For microwave measurements, the upper bound of the integral (Eq. (21), (28)) can be used 

to verify the consistency of the measured permeability spectra. This can be done very simply. 
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It is not necessary for the measurement system to cover a large band since the majoration is 
valid for any integration range. This is very useful, especially for supporting experimental 
results claiming large permeability levels, since microwave magnetic measurements are 
known to be tricky. In the case of thin film permeameters that cover a broad enough 
bandwidth, the relation sµ MFM π4)( ≈  can be used to assess or to demonstrate the 
measurement precision of the apparatus. In most cases, the uncertainty on the right member is 
essentially due to the gyromagnetic ratioγ , which is generally considered to be comprised 
between 2.8 and 3 GHz/kOe, and to some extent to the measurement precision of the 
saturation magnetization and of the film thickness.  

 
The results established in this work are useful also for the design of magnetic microwave 

materials. The sum laws (21), (27), (28) express certain tradeoffs between high permeability 
levels and operation at high frequencies. As a consequence, these sum laws may be viewed as 
generalisations of Snoek’s law. The integral quantity can easily be experimentally determined 
on many materials. Simple figures of merit deduced from this integral may be used to 
compare microwave materials. In some applications, f.µ’’(f) is a quantity of direct interest. 
This is the case when magnetic losses are desired for microwave attenuation, either for 
microwave filtering, electromagnetic compatibility or for Radar Absorbing Materials. The 
first order approximation of the reflection or transmission losses are in f.µ’’(f). It has been 
shown that in the thin absorber limit, the performance of a magnetic absorber is bounded by 
the integral.12 As a consequence, it is an important result that moderate skin effect maintain 
the integral losses unaffected, even though their frequency distribution is much affected. For 
somewhat larger skin effect, the correction factor –s may become significant. This leads to a 
decrease in the integrated losses.  

 
Last but not least, this study shows that microwave permeability measurements can be a 

tool for obtaining information on the magnitude and the orientation of the magnetization 
within samples. The integral is related to a few magnetic parameters even in cases where µ’’ 
cannot be described by simple models because of some heterogeneities or magnetic coupling. 
This is very appealing for the study of unsaturated materials. In the case of multilayers, Eqs. 
(25) and (26) show that the integral provides an indication on the average orientation of the 
magnetization within the sample thickness. The microwave field is indeed a probe of the 
magnetization normal to the excitation, with the ability to penetrate into relatively thick 

samples. The integral ∫
F

dfffµ
0

.).('' provides quantitative information on the magnitude of the 

magnetization normal to the probe field.  
 
 

 
APPENDIX 

 
The dependence of the fields with time is assumed to be exp(+jωt), which is consistent 

with permeabilities that take the form µ’-jµ’’, µ’’>0. The expression of the permeability of a 
uniformly magnetized ellipsoid can be written as: 

 
( )

22
0 )(

1
ffFFjF

fjFF
µ

yx

yM
G −++

+
+=

α
α

 (A1a) 

with 
 yx FFF .0 =  (A1b) 
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 sM MF πγ 4= ; )( intHMNF sxx += γ ; )( intHMNF syy += γ   (A1c) 
 szk MNHH −=int  ; α<<1 (A1d) 
 
4πMs is the saturation magnetization of the material, Nx, Ny, Nz are the demagnetizing 

coefficients of the ellipsoid, and Hk is the external field (or anisotropy field) that saturates the 
ellipsoid along +z. πγγ 2/=  is close to 3 MHz/Oe. F0 is the resonance frequency. The 
orientation conventions are similar to those in ref [12], the permeability given by (A1a) being 
in the x direction. In the case of soft magnetic materials under microwave excitation, and for 
null or moderate external fields, the different contributions to the Hk field will be small as 
compared to the saturation magnetization. The internal field Hint must be positive for the 
magnetization to be stable in the +z direction, and as a consequence Hint is also small. 

Following Eq. (6), a central issue is to estimate the quantity  

 ( )∫
π

θθ θ
0

2.).(
2
1 dFeFeµ jj   

for a frequency F much larger than the resonance frequency F0. It is convenient to 
introduce the reduced frequency 

 
0F

Fe jθ

ν =  (A2) 

thereby giving 

 ( ) ∫∫ =
ππ

θθ θν
πχ
νπχθ

0

2

0

2
00

0

2 ..
4

)(4
2
1.).(

2
1 dµFdFeFeµ jj  (A3) 

 
 
The permeability from Eq. (A1) can thus be expressed as a function of the reduced 

frequency ν: 

 ( )να
νβν

πχ '1
.21

41 2
0 j
j

µG +
+−

+= , (A4a) 

where 4πχ0 is the initial susceptibility,  

 2
0

0

.
4

F
FF

F
F yM

x

M ==πχ ; (A4b) 

 
0

2
F

FF yx +
= αβ  ; 

yF
F0' αα = . (A4c) 

 
This is valid provided that the internal fields are small 
 sk MHH π4, int <<  (A4d) 
 
The development in 1/ν of the susceptibility can be written as: 
 

 ( )να
νν

β
νπχ

νπχ '11211
4

)(4 1

22
0
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2

jj  (A5) 

with 
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0

2
'2

F
FF yx +

= αβ . (A6) 

The terms in α’.β have been neglected in the above expression since the damping 
parameter is small and the terms in α2 are negligible. It should be noted that when the Bloch-
Blombergen damping parameter is used instead of the Gilbert damping parameter, the 
expression of the susceptibility Bπχ4  has the same form as Eq. (A1), with α’=0 and β=1/T, 
where T is the characteristic damping time. 

It is thus necessary to obtain an appropriate development of the factor A(ka) that accounts 
for the skin effect. The wavevector inside the ferromagnetic inclusion can be expressed as: 

 cµk /. ωε= , (A7) 
where ω=2πf is the pulsation corresponding to the frequency f, c the celerity of light, and ε 

the permittivity of the inclusion.  

 
0.εω
σε j−

= , (A8) 

Here, ε0 is the dielectric constant of void and σ the conductivity. When a skin effect is 
present but not overwhelming, it is possible to use the low order development of A(ka) 
according to Eq. (5). In the case where the upper integration frequency F is significantly 
larger than the gyromagnetic resonance frequency, but not too large,  

 
σπ 2

0
0 2

1
aµ

FF <<<< , (A9) 

we obtain  
 
 ( ))(41..1)( νπχνν BjbA +−≈ , (A10) 
 
with  

 p
aFµb σπ 2

002
= . (A11) 

The set of assumptions (A9) can be written as:  
 )./(11 pb<<<< ν , (A12) 
The permeability in the presence of skin effect can be written as 
 
 [ ] ννπχνννπχν .)(4...21).(41)( jbjbjbµ BG −−−+≈ . (A13) 
 
Keeping only the most significant terms leads to 
 

 ννα
ν
βν

ν
πχβ

ν
πχν .''224'41.41)( 0

2
0 jbjjjbbµ −⎥

⎦

⎤
⎢
⎣

⎡
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⎠
⎞

⎜
⎝
⎛ −++−≈ . (A14) 

The integration of µ(ν).ν on the semi-circle C- can be expressed as the linear combination 
of integrals of νn with different powers n. These integrals are easily calculated using: 

 ∫∫ =
−

π
θ θνθν

0

.
2
1.

2
1 ded jnn

C

n . (A15) 

One finds 
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Eq. (A16) can be written in the following form 

 ( ) [ ] '1.4
2

.).('' 2

0

SgtsMNdfffµ sy

F

++−−≈∫ πγπ , (A17) 

where s, S’, t and g are small corrective terms, with positive signs. s and S’ are related to 
skin effect; t corresponds to the finite truncation; g corresponds to a small contribution when 
the Gilbert damping model is considered, but becomes zero when the Bloch-Bloembergen 
damping model is employed. Each of these terms will be discussed in the following sections. 

 
 A. Corrections associated with the magnetic damping 

Previous work11 has been conducted assuming a magnetic damping described by the 
Bloch-Bloembergen equations. When the damping is described according to the Landau-
Lifshitz-Gilbert model, the integral up to infinite frequencies diverges. The corrective terms in 
Eq. (A17) are: 

 
Myy FN

F
F
F

F
Fg α

π
α

π
α

π
22'2

0

=== . (A18) 

Cases where Ny is null or small are of no interest since the dominating factor in the 
expression of the integral is proportional to Ny. As the upper integration bound, F is expected 
to be lower than FM, and since α is small (from a few percent down to a fraction of a percent), 
g<<1. This establishes that for a practical case, the theoretical results obtained for 

∫
F

dfffµ
0

.).(''  are independent of the damping model under consideration. 

 
 B. Skin effect corrections 

Let us examine in more detail the corrective terms associated with skin effect in Eq. (A17). 
The term S’ is independent of the magnetization of the sample.  

 2

0

.
2
3' F

F
bFS ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= . (A19) 

It is well known that conductive particles may exhibit non-unit permeability as a result of 
eddy currents. Although the integral of µ’’(f).f diverges at infinity, it should be noted that if 
the integral is performed only up to a frequency F that is not too large, then S’<<F2 according 
to Eq. (A9). In the case of ferromagnetic materials, it is convenient to express S’ as a 
perturbation of the main term in Eq. (A17): 

 '.
2

' 2 sFNS My
π

= . (A20) 

The expression for s’ is: 

 
2 2 3
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and s’ is negligible provided that (A9) is met and F<FM. Let us now examine the s 

corrective term in Eq. (A17), 
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It is straightforward that s is positive, which means that skin effect tends to decrease the 
value of the integral.  

 
 C. Finite frequency summation correction 

Stopping the integration at a certain finite upper frequency would affect the value of the 
integral, even if no skin effect is present. The t term in Eq. (A17) accounts for this truncation 
effect. It can be expressed as: 

 ( )
F

FNN
F
Ft M

yx +≈= 22'4 0 α
ππ

β . (A23) 

This correction factor is far below unity provided that 
 ( )sM MFF πγαα 4=>> . (A24) 
Even for a material with a very large saturation magnetization such as CoFe with 

4πMs=24k Oe, for a typical value of α=2%, Eq. (A24) requires that the upper integration 
frequency is such that F>>1.4 GHz. This is an easily met condition. 

 
 D. Effect of experimental measurement errors 
When using experimental permeability data, the error on the sum increases when the upper 

integration bound is extended. An error term has to be added to the right member of Eq. 
(A17). In order to be able to directly compare the error ±e to the other terms –s and –t, it is 
convenient to write this additional term as 

 eFN My .
2

2π .  

It can thus be shown in a straightforward manner that 
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where Δµ is the maximum error on the measured permeability. The relative error is small 
provided that 

 ( ) µMF s Δ<< /4πγ . (A26) 
 



Crit_skin_LL31.doc p. 16 28/11/2007 

Figure Caption 
 

 
 
FIG. 1. Various inclusion shapes, with the associated functions A(ka) used for the 

expression of the permeability in the presence of skin effect according to ref [19]; k is the 
wavevector inside the inclusion, and a is its radius (or half thickness in the case of a plate). 
The expression of the 2nd order approximation of A(ka) is also given.  
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FIG. 2 The imaginary part of the permeability µ’’ computed for films with a thickness 2a 

ranging from 0.1 µm to 2 µm, using the Landau-Lifschitz-Gilbert model and taking into 
account skin effect. 
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FIG 3. The efficient dynamic magnetization )(FM µ associated with the calculated 

permeabilities represented in Fig. 2, obtained either by numerical integration (symbols), or by 
analytical estimates (lines). The error bars represent typical experimental errors and the 
dashed line corresponds to the saturation magnetization. 
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FIG. 4. The imaginary part of the permeability µ’’ measured on CoZr amorphous thin 

films of varying thicknesses. 
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FIG. 5. The efficient dynamic magnetization )(FM µ  associated with the measured 

permeabilities represented in Fig. 4, and a comparison with the saturation magnetization 
values (dashed line with error bars). The extrapolation of the saturation magnetization from 
Mµ(F) using analytical estimates is also represented, with appropriate error bars. 
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Table Caption 
 
 

Lower bound Upper bound Eq. Comment 

F0<<F 
 
 

12
0 )2( −<< σπ aµF  

 
 

(A9) 
 

(A4d) 

Required for the validity of the whole 
approach 

sk MHH π4, int << also required  

 F <<FM/ α. (A18) Effect of Gilbert damping +g is small 

 F <FM (A21) Skin effect term s’ is small 

FpFaµ M <</4 22
0 σ   (A22) Skin effect term -s is small 

α.FM<<F  (A24) Truncation term -t is small 

 µFF M Δ<< /  (A25) Experimental error ±e is small 

Table I. Guidelines for choosing the upper integration frequency F on ∫
F

dfffµ
0

.).('' , as a 

function of the gyromagnetic resonance frequency F0, sM MF πγ 4= , and other parameters. 
 
 
 
 

Lower bound Upper bound Parameter Eq. Analytical 
Value 

Numerical 
value 

F0=1.2 GHz 
2 1

0(2 ) 165 GHzµ aπ σ − =
 

∫
F

dfffµ
0

.).(''  1.05 103 GHz2 0.99 103 GHz2 

 FM/ α.=1500 GHz +g (A18) 0.3% 0.4% 

 FM=30 GHz +s’ (A21) 0.05% <<0.1% 
2 2

04 1.2 GHzMµ a F
p
σ

=   -s (19) -19% -23% 

α.FM=0.6 GHz  -t (18) -6.4% -6.5% 

 / 30 GHzMF µΔ =  ±e (20) ±1.3%  

 
Table II. The numerical estimation of the lower and upper frequency bounds for F associated 
with Table I in the case of a 2 µm thick film; for F=6 GHz, values of the different corrective 

terms accounting for the relative difference between 
0

''( ). .
F

µ f f df∫  and ( )24
2 sMπγπ  obtained 

both analytically and numerically.  
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