1,897 research outputs found

    Representing Structural Information of Helical Charge Distributions in Cylindrical Coordinates

    Full text link
    Structural information in the local electric field produced by helical charge distributions, such as dissolved DNA, is revealed in a straightforward manner employing cylindrical coordinates. Comparison of structure factors derived in terms of cylindrical and helical coordinates is made. A simple coordinate transformation serves to relate the Green function in cylindrical and helical coordinates. We also compare the electric field on the central axis of a single helix as calculated in both systems.Comment: 11 pages in plain LaTex, no figures. Accepted for publication in PRE March, 199

    Signature Studies of Cosmic Magnetic Monopoles

    Get PDF
    This talk explores the possibility that the Universe may be populated with relic magnetic monopoles. Observations of galactic and extragalactic magnetic fields, lead to the conclusion that monopoles of mass < 10^{14} GeV are accelerated in these fields to relativistic velocities. The relativistic monopole signatures and features we derive are (i) the protracted shower development, (ii) the Cherenkov signals, (iii) the tomography of the Earth with monopoles, and (iv) a model for monopole airshowers above the GZK cutoff.Comment: 10 pages, 2 figures, talk given at the First International Workshop on Radio Detection of High--Energy Particles, November 16 - 18, 2000, UCL

    SLOCC determinant invariants of order 2^{n/2} for even n qubits

    Full text link
    In this paper, we study SLOCC determinant invariants of order 2^{n/2} for any even n qubits which satisfy the SLOCC determinant equations. The determinant invariants can be constructed by a simple method and the set of all these determinant invariants is complete with respect to permutations of qubits. SLOCC entanglement classification can be achieved via the vanishing or not of the determinant invariants. We exemplify the method for several even number of qubits, with an emphasis on six qubits.Comment: J. Phys. A: Math. Theor. 45 (2012) 07530

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta

    New invariants for entangled states

    Get PDF
    We propose new algebraic invariants that distinguish and classify entangled states. Considering qubits as well as higher spin systems, we obtained complete entanglement classifications for cases that were either unsolved or only conjectured in the literature.Comment: published versio

    Positivity of Entropy in the Semi-Classical Theory of Black Holes and Radiation

    Get PDF
    Quantum stress-energy tensors of fields renormalized on a Schwarzschild background violate the classical energy conditions near the black hole. Nevertheless, the associated equilibrium thermodynamical entropy ΔS\Delta S by which such fields augment the usual black hole entropy is found to be positive. More precisely, the derivative of ΔS\Delta S with respect to radius, at fixed black hole mass, is found to vanish at the horizon for {\it all} regular renormalized stress-energy quantum tensors. For the cases of conformal scalar fields and U(1) gauge fields, the corresponding second derivative is positive, indicating that ΔS\Delta S has a local minimum there. Explicit calculation shows that indeed ΔS\Delta S increases monotonically for increasing radius and is positive. (The same conclusions hold for a massless spin 1/2 field, but the accuracy of the stress-energy tensor we employ has not been confirmed, in contrast to the scalar and vector cases). None of these results would hold if the back-reaction of the radiation on the spacetime geometry were ignored; consequently, one must regard ΔS\Delta S as arising from both the radiation fields and their effects on the gravitational field. The back-reaction, no matter how "small",Comment: 19 pages, RevTe

    Simulating non-Markovian stochastic processes

    Get PDF
    We present a simple and general framework to simulate statistically correct realizations of a system of non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical an efficient algorithm alike the Gillespie algorithm for Markovian processes, with the difference that now the occurrence rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian generalized Gillespie stochastic simulation methodology to investigate the effects of non-exponential inter-event time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the global behavior of complex systems, with important implications for their understanding and prediction. We also assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared to other existing methods, we find that the generalized Gillespie algorithm is the most general as it can be implemented very easily in cases, like for delays coupled to the evolution of the system, where other algorithms do not work or need adapted versions, less efficient in computational terms.Comment: Improvement of the algorithm, new results, and a major reorganization of the paper thanks to our coauthors L. Lafuerza and R. Tora

    Agents Play Mix-game

    Full text link
    In mix-game which is an extension of minority game, there are two groups of agents; group1 plays the majority game, but the group2 plays the minority game. This paper studies the change of the average winnings of agents and volatilities vs. the change of mixture of agents in mix-game model. It finds that the correlations between the average winnings of agents and the mean of local volatilities are different with different combinations of agent memory length when the proportion of agents in group 1 increases. This study result suggests that memory length of agents in group1 be smaller than that of agent in group2 when mix-game model is used to simulate the financial markets.Comment: 8 pages, 6 figures, 3 table

    Software and information life cycle (SILC) for the Integrated Information Services Organization

    Full text link
    This document describes the processes to be used for creating corporate information systems within the scope of the Integrated Information Services (IIS) Center. Issue B describes all phases of the life cycle, with strong emphasis on the interweaving of the Analysis and Design phases. This Issue B supersedes Issue A, which concentrated on the Analysis and Implementation phases within the context of the entire life cycle. Appendix A includes a full set of examples of the deliverables, excerpted from the Network Database. Subsequent issues will further develop these life cycle processes as we move toward enterprise-level management of information assets, including information meta-models and an integrated corporate information model. The phases described here, when combined with a specifications repository, will provide the basis for future reusable components and improve traceability of information system specifications to enterprise business rules
    • 

    corecore