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Abstract
We propose new algebraic invariants that distinguish and classify entangled states. Considering

qubits as well as higher spin systems, we obtained complete entanglement classifications for cases

that were either unsolved or only conjectured in the literature.

∗ roman.buniy@gmail.com
† tom.kephart@gmail.com
‡ Permanent address

1

http://arxiv.org/abs/1009.2217v2
mailto:roman.buniy@gmail.com
mailto:tom.kephart@gmail.com


I. INTRODUCTION

Ever since the formulation of the EPR paradox [1], the phenomenon of quantum en-
tanglement has generated an ever increasing stream of research. Although applications of
entangled states are already advanced and extensive, fundamental understanding of the phe-
nomenon is nevertheless still incomplete. Such an understanding requires the description of
qualitative features of entanglement (which are well-known and simple to formulate) and its
quantitative features (which are very complex and not completely understood). The latter
are usually described in terms of entanglement invariants that can distinguish entangled
states, and finding these is very difficult. Since distinction implies classification, this leads
to the problem of entanglement classification, which is a prominent unsolved problem in
quantum information theory.

Entanglement has been studied mostly for subsystems of spin one half. Quantum com-
putation favors this case since a qubit with its two degrees of freedom represents the funda-
mental unit of quantum information. However, as we do not yet know on which quantum
systems large practical quantum computers will ultimately be based, higher spin quantum
states should be studied as well. Such a study would be much advanced by understanding
the classification of entangled states for the general case of subsystems of arbitrary spins.

The classical theory of invariants [2] provides the standard method of finding entangle-
ment invariants. Variants of this method are used in most known cases of partial or complete
classification; see, for example, [3–16]. We propose a new method of entanglement classi-
fication that uses only basic linear algebra [17] and whose invariants are discrete algebraic
invariants complementing the known continuous invariants.

The following brief review of key properties of entangled states motivates the use of
algebraic invariants for entanglement classification. In the main text we fully develop these
ideas and apply them to several cases of three entangled higher spin systems, only some of
which are known in the literature.

We first observe that the phenomenon of entanglement is a consequence of the superpo-
sition principle and the tensor product postulate. By the superposition principle, the state
space of a physical system is a vector space, so that any linear combination of state vectors
is such as well. By the tensor product postulate, the state space of a system consisting of
several subsystems is a subspace of the tensor product of the state spaces of all the sub-
systems. The principle and postulate together imply that a state vector of the system is a
linear combination of tensor products of state vectors of the subsystems.

Consequently, the information provided by a given state of the system can be divided
into two parts: (1) a list of contributing states of the subsystems and (2) the manner in
which these are combined. The former and the latter describe respectively macro and micro
properties of the states, and entanglement characterizes the latter. For given states of the
subsystems (the first part is fixed), there are various ways in which linear combinations of
their tensor products can be formed (the second part varies). In the simplest case only one
state from each subsystem contributes, and there is only one term in the linear combination,
which results in no entanglement. As numbers of contributing states from each subsystem
increase, new ways to form linear combinations become available. If new added states are
linearly independent from those already included, this results in states that have, in general,
higher degrees of entanglement. The process rapidly becomes complicated for a large number
of subsystems because of the combinatorial nature of the procedure. Exploring all resulting
possibilities and partitioning states into corresponding classes formed by related states is
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the goal of entanglement classification.
We now proceed with explicit details of our method and demonstrate its use with several

examples. A more general, comprehensive, and detailed discussion of the method—including
a theorem on a correspondence between entanglement classes and algebraic invariants—and
its application to more complicated examples can be found in [18].

II. METHOD

Let S be a system that consists of subsystems S1, . . . , Sn, and assume that state spaces
of S, S1, . . . , Sn are finite dimensional vector spaces V, V1, . . . , Vn, respectively. (We consider
vector spaces over R for the simplicity of presentation; the case of complex vector spaces
needs only minimal modifications.) The space V is a subspace of V1 ⊗ · · · ⊗ Vn, where
a specific choice of V is determined by the nature of the subsystems. In a particularly
important case of identical subsystems, V is determined by a permutation symmetry acting
on the subsystems. We consider here only the simplest case where V = V1 ⊗ · · · ⊗ Vn.

Entanglement properties of v ∈ V are determined by specific ways in which v is formed
from elements of V1, . . . , Vn. From this point of view, the simplest elements of V are decom-
posable vectors. Any decomposable vector v ∈ V can be written in the factorizable form
v = v1 ⊗ · · · ⊗ vn, where vi ∈ Vi, and an important property of such a vector v is that each
subsystem Si is in a definite state vi. Although decomposable vectors comprise only a small
part of V , they span all of it. This simple property of tensor products leads to remarkable
complications and plays the central role in our classification of entangled states.

Nondecomposable vectors are vectors that cannot be written in the factorizable form, and
for such states, we cannot say in which state each subsystem is. The simplest example of a
nondecomposable vector in V is v+v′, where v = v1⊗· · ·⊗vn, v

′ = v′1⊗· · ·⊗v′n and vi ∈ Vi,
v′i ∈ Vi are such that there are at least two linearly independent pairs of vectors among the
pairs {(vi, v

′
i)} for each i. (The EPR state for n = 2 and the GHZ state [19] for n = 3 are

such examples.) It seems plausible (and will be proved later) that linear combinations with
a larger number of terms and a smaller number of linear relations among vectors in each
tensor product represent states with larger degrees of entanglement. To define degrees of
entanglement, we proceed as follows.

We first note that a degree of entanglement is an algebraic invariant: a quantity that
depends only on properties of spaces and does not depend on properties of individual vectors.
Here such invariants can appear only as dimensions of linear subspaces of V , and only
subspaces linearly depending on v can participate in classification of entangled states. To
find the required subspaces, we note that any linear subspace can be defined using an
appropriate linear map. Specifically, vector spaces W and W ′ together with a linear map
f : W → W ′ define two associated fundamental subspaces: the kernel and image of the
map,

ker f = {w ∈ W : f(w) = 0} ⊂ W,

im f = {w′ ∈ W ′ : w′ = f(w), w ∈ W} ⊂ W ′.

Introducing the transpose map f ′ : W ′ → W , we find that the matrices of f and f ′ are the
transposes of each other, which implies that the kernels and images of f and f ′ are related.
Thus, if both maps are used to classify subspaces, then it suffices to consider only their
kernels, for example.

3



Since we seek a map f(v) : W → W ′ that is linear in v, we have to choose f(v)(w) = v⊗w∗,
where W , W ′ are such thatW⊗W ′ = V and w∗ is the dual of w. The kernel K(v) = ker f(v)
and the invariant k(v) = dimK(v) describe an entanglement property of v associated with
a particular choice of (W,W ′). For w ∈ K(v), the equation v ⊗ w∗ = 0 implies the general
form of v,

v =

dimW−k(v)
∑

i=1

wi ⊗ w′
i, {wi} ⊂ W, {w′

i} ⊂ W ′,

dim span ({wi}) = dim span ({w′
i}) = dimW − k(v),

which is a convenient computational tool that allows us to group states with identical en-
tanglement properties.

To complete the formulation of the method, we need to explore all combinatorial possi-
bilities present in the problem. To this end, we choose all possible pairs of spaces (W,W ′)
such that W ⊗W ′ = V , and for each such choice we find the corresponding map f(v), the
kernel K(v), and the invariant k(v) for each v ∈ V . The resulting set of the kernels {K(v)}
determines the entanglement class of v. It turns out, however, that the sequence (ordered
set) of the invariants (k(v)) does not suffice to specify the class uniquely, but the sequence
of the dimensions of all possible intersections of elements of {ker (f(v)⊗ idW ′)} does. Now
choosing the smallest subsequence of independent invariants among such a sequence, we ar-
rive at the complete set of degrees of entanglement of elements of V . Finally, by examining
possible values of the invariants, we find the set of entanglement classes of V .

III. EXAMPLES

Our classification method works for arbitrary finite n and D = (dim Vi)1≤i≤n. As illus-
trative examples, we consider entanglement for the case n = 2 for arbitrary D = (d1, d2)
and the case n = 3 for D = (2, 2, d) and D = (2, 3, d), where d is arbitrary and corresponds
to spin 1

2
(d− 1).

We first consider the case n = 2, D = (d1, d2). Maps and associated quantities are
given in Table I. The invariants k1(v), k2(v) describe properties of v that are related to
the partition of the system S into subsystems (S1, S2), (S2, S1), respectively. Since the
partitions (S1, S2), (S2, S1) are equivalent, there is a relation between k1(v), k2(v); specifically
d1 − k1(v) = d2 − k2(v) for each v ∈ V . This results in the complete set of entanglement
classes and general forms of their elements given in Table II.

TABLE I. Maps and associated quantities for n = 2, D = (d1, d2).

(W,W ′) f(v) K(v) k(v)

(V1, V2) f1(v) K1(v) k1(v)

(V2, V1) f2(v) K2(v) k2(v)

Next we consider the case n = 3, D = (d1, d2, d3). Maps and associated quantities
are given in Table III. The invariants k1(v), k2(v), k3(v), k1,2(v), k1,3(v), k2,3(v) describe
properties of v that are related to the partition of the system S into subsystems (S1, S2∪S3),
(S2, S1 ∪ S3), (S3, S1 ∪ S2), (S1 ∪ S2, S3), (S1 ∪ S3, S2), (S2 ∪ S3, S1), respectively. Similarly
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TABLE II. The entanglement classes {Cl}0≤l≤m, m = min {d1, d2}, their independent algebraic

invariants k1(v), and general forms of their representative elements for n = 2, D = (d1, d2). Each

expression [j, j] stands for u1,j ⊗ u2,j, where {ui,j} is a set of any linearly independent elements of

Vi. (For example, a representative element of C2 is the EPR state v = u1,1 ⊗ u2,1 + u1,2 ⊗ u2,2.)

k1(v) v

C0 d1 0

Cl d1 − l [1, 1] + · · ·+ [l, l]

to the case of two spaces, the partitions in each group in ((S1, S2 ∪ S3), (S2 ∪ S3, S1)),
((S2, S1∪S3), (S1∪S3, S2)), ((S3, S1∪S2), (S1∪S2, S3)) are equivalent and there are relations

d1 − k1(v) = d2d3 − k2,3(v), d2 − k2(v) = d1d3 − k1,3(v), d3 − k3(v) = d1d2 − k1,2(v)

for each v ∈ V .

TABLE III. Maps and associated quantities for n = 3, D = (d1, d2, d3).

(W,W ′) f(v) K(v) k(v)

(V1, V2 ⊗ V3) f1(v) K1(v) k1(v)

(V2, V1 ⊗ V3) f2(v) K2(v) k2(v)

(V3, V1 ⊗ V2) f3(v) K3(v) k3(v)

(V1 ⊗ V2, V3) f1,2(v) K1,2(v) k1,2(v)

(V1 ⊗ V3, V2) f1,3(v) K1,3(v) k1,3(v)

(V2 ⊗ V3, V1) f2,3(v) K2,3(v) k2,3(v)

When classifying states for n = 3, we find a feature not present for n = 2. Namely, states
with the same values of the invariants k1(v), k2(v), k3(v) can be distinguished with the help
of an additional subspace of V ,

K1,2,3(v) = ker (f1,2 ⊗ id3) ∩ ker (f1,3 ⊗ id2) ∩ ker (f2,3 ⊗ id1),

where idi : Vi → Vi is the identity map. The invariant k1,2,3(v) = dimK1,2,3(v) describes a
property of v that is related to the partition of the system S into subsystems (S1, S2, S3),
and k1,2,3(v) is irreducible in the sense that it cannot be expressed in terms of the invariants
k1(v), k2(v), k3(v).

As our main computational device, we use the general forms of v that follow from the
equation v ⊗ w∗ = 0 for three cases w ∈ K1(v), w ∈ K2(v), w ∈ K3(v). The consistency of
the resulting forms leads to restrictions on possible values of invariants and consequently to
the complete set of equivalent classes.

Although it is possible to perform these computations for any D, we give the results only
for the cases D = (2, 2, d) and D = (2, 3, d), where d is arbitrary; other cases are similarly
treated. Due to the special role played by V3 in these examples, it is convenient to proceed
by first considering each possible value of k3(v), then finding allowed values of k1(v), k2(v),
and finally those of k1,2,3(v). As a result, we obtain the complete set of entanglement classes
and general forms of their reperesentative elements as given in Tables IV and V. For each
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TABLE IV. The entanglement classes, their algebraic invariants, and general forms of their

representative elements for n = 3, D = (2, 2, d). Classes for which any of the invariants in

(k3(v), k1,2,3(v)) are negative should be discarded. Classes within a horizontal block are added

each time d increases by 1, so that there are 7, 9, 10 classes for d = 2, d = 3, d ≥ 4, respec-

tively. Each expression [j1, j2, j3] stands for u1,j1 ⊗u2,j2 ⊗u3,j3 , where {ui,j} is a set of any linearly

independent elements of Vi. (For example, for d = 2, the GHZ state is v = [1, 1, 1] + [2, 2, 2] =

u1,1 ⊗ u2,1 ⊗ u3,1 + u1,2 ⊗ u2,2 ⊗ u3,2 in this notation.)

k1(v) k2(v) k3(v) k1,2,3(v) v

C0 2 2 d 4d 0

C1 1 1 d− 1 3d− 2 [1, 1, 1]

C2 0 0 d− 1 3d− 3 [1, 1, 1] + [2, 2, 1]

C3 0 1 d− 2 2d− 1 [1, 1, 1] + [2, 1, 2]

C4 1 0 d− 2 2d− 1 [1, 1, 1] + [1, 2, 2]

C5 0 0 d− 2 2d− 3 [1, 1, 1] + [1, 2, 2] + [2, 1, 2]

C6 0 0 d− 2 2d− 4 [1, 1, 1] + [2, 2, 2]

C7 0 0 d− 3 d− 2 [1, 1, 1] + [1, 2, 2] + [2, 2, 3]

C8 0 0 d− 3 d− 3 [1, 1, 1] + [1, 2, 2] + [2, 1, 2] + [2, 2, 3]

C9 0 0 d− 4 0 [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 2, 4]

class in these tables, there are several possible general forms of reperesentative elements
related by certain permutations; see Appendix for details of the case D = (2, 2, 2) (3 qubits)
and [18] for further details.

IV. CONCLUSIONS

The superposition principle and the tensor product postulate in quantum mechanics give
rise to the phenomenon of entanglement. As a result, a state vector of a system consisting
of several subsystems is a linear combination of tensor products of state vectors of the
subsystems. The nature of the linear combination determines the entanglement of the state
vector. More specifically, properties of algebraic structures associated with states can be
used to derive entanglement invariants.

We developed a method of classification of entangled states that uses linear maps to
define degrees of entanglement. Our classification uses discrete algebraic invariants, which
should be contrasted with the standard continuous invariants.

For cases found in the literature, entanglement classifications obtained by using our
method coincide with results obtained by other methods. We also obtained results for cases
that were either unsolved or only conjectured in the literature. In particular, for the case
n = 3, D = (2, 2, d) for d = 2, . . . , 5, our method gives the same number of classes as classifi-
cations in [3], [4], [7], [9], while for d > 5, our method gives the same number of classes as the
conjectured classification in [7], [9]. Our entanglement classes and representative elements
for D = (2, 3, d) are all new.

Although we considered here only some of the simpler cases of three subsystems, other
cases are only slightly more complicated. In a further study [18], we consider a large selection
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TABLE V. The entanglement classes, their algebraic invariants, and general forms of their represen-

tative elements for n = 3, D = (2, 3, d). Classes for which any of the invariants in (k3(v), k1,2,3(v))

are negative should be discarded. Classes within a horizontal block are added each time d increases

by 1, so that there are 9, 17, 23, 25, 26 classes for d = 2, d = 3, d = 4, d = 5, d ≥ 6, respec-

tively. Each expression [j1, j2, j3] stands for u1,j1 ⊗u2,j2 ⊗u3,j3 , where {ui,j} is a set of any linearly

independent elements of Vi.

k1(v) k2(v) k3(v) k1,2,3(v) v

C0 2 3 d 6d 0

C1 1 2 d− 1 5d− 3 [1, 1, 1]

C2 0 1 d− 1 5d− 5 [1, 1, 1] + [2, 2, 1]

C3 0 2 d− 2 4d− 2 [1, 1, 1] + [2, 1, 2]

C4 1 1 d− 2 4d− 3 [1, 1, 1] + [1, 2, 2]

C5 0 1 d− 2 4d− 5 [1, 1, 1] + [1, 2, 2] + [2, 1, 2]

C6 0 1 d− 2 4d− 6 [1, 1, 1] + [2, 2, 2]

C7 0 0 d− 2 4d− 7 [1, 1, 1] + [1, 2, 2] + [2, 3, 1]

C8 0 0 d− 2 4d− 8 [1, 1, 1] + [1, 2, 2] + [2, 2, 1] + [2, 3, 2]

C9 1 0 d− 3 3d− 1 [1, 1, 1] + [1, 2, 2] + [1, 3, 3]

C10 0 1 d− 3 3d− 4 [1, 1, 1] + [1, 2, 2] + [2, 1, 3]

C11 0 1 d− 3 3d− 5 [1, 1, 1] + [1, 2, 2] + [2, 1, 2] + [2, 2, 3]

C12 0 0 d− 3 3d− 5 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2]

C13 0 0 d− 3 3d− 6 [1, 1, 1] + [1, 2, 2] + [2, 3, 3]

C14 0 0 d− 3 3d− 7 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2] + [2, 2, 3]

C15 0 0 d− 3 3d− 8 [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 3, 1]

C16 0 0 d− 3 3d− 9 [1, 1, 1] + [1, 2, 2] + [2, 2, 2] + [2, 3, 3]

C17 0 1 d− 4 2d− 2 [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 2, 4]

C18 0 0 d− 4 2d− 3 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 3, 4]

C19 0 0 d− 4 2d− 5 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 2, 4] + [2, 3, 1]

C20 0 0 d− 4 2d− 6 [1, 1, 1] + [1, 2, 2] + [2, 2, 3] + [2, 3, 4]

C21 0 0 d− 4 2d− 7 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 2, 3] + [2, 3, 4]

C22 0 0 d− 4 2d− 8 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2] + [2, 2, 3] + [2, 3, 4]

C23 0 0 d− 5 d− 3 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 4] + [2, 2, 5]

C24 0 0 d− 5 d− 5 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 3] + [2, 2, 4] + [2, 3, 5]

C25 0 0 d− 6 0 [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 4] + [2, 2, 5] + [2, 3, 6]

of such cases and formulate a general conjecture about entanglement classes for all cases of
three subsystems. Using our method, we also obtain entanglement classes of four qubits [18].
Furthermore, we believe the complete classification of entanglement of five qubits is now
within reach and we plan to study it in the near future.
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Appendix: Three qubits

For an arbitrary vector v ∈ V1 ⊗ V2 ⊗ V3 in its general form

v =
2

∑

i=1

2
∑

j=1

2
∑

k=1

vijke1,i ⊗ e2,j ⊗ e3,k,

the linear maps f(v) are given by

f1(v)(w) =

2
∑

i=1

2
∑

j=1

2
∑

k=1

vijkwie2,j ⊗ e3,k, w ∈ V1,

f2(v)(w) =
2

∑

i=1

2
∑

j=1

2
∑

k=1

vijkwje1,i ⊗ e3,k, w ∈ V2,

f3(v)(w) =
2

∑

i=1

2
∑

j=1

2
∑

k=1

vijkwke1,i ⊗ e2,j, w ∈ V3,

f1,2(v)(w) =

2
∑

i=1

2
∑

j=1

2
∑

k=1

vijkwije3,k, w ∈ V1 ⊗ V2,

f1,3(v)(w) =
2

∑

i=1

2
∑

j=1

2
∑

k=1

vijkwike2,j, w ∈ V1 ⊗ V3,

f2,3(v)(w) =
2

∑

i=1

2
∑

j=1

2
∑

k=1

vijkwjke1,i, w ∈ V2 ⊗ V3.

The associated kernels K(v) = ker f(v) are

K1(v) = {w ∈ V1 :

2
∑

i=1

vijkwi = 0, j, k ∈ {1, 2}},

K2(v) = {w ∈ V2 :
2

∑

j=1

vijkwj = 0, i, k ∈ {1, 2}},

K3(v) = {w ∈ V3 :
2

∑

k=1

vijkwk = 0, i, j ∈ {1, 2}},

K1,2(v) = {w ∈ V1 ⊗ V2 :
2

∑

i=1

2
∑

j=1

vijkwij = 0, k ∈ {1, 2}},
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K1,3(v) = {w ∈ V1 ⊗ V3 :
2

∑

i=1

2
∑

k=1

vijkwik = 0, j ∈ {1, 2}},

K2,3(v) = {w ∈ V2 ⊗ V3 :
2

∑

j=1

2
∑

k=1

vijkwjk = 0, i ∈ {1, 2}}.

The constraint equations for the above kernels follows directly from their definitions. The
slightly more complicated kernel K1,2,3(v) (with the resulting 12 constraint equations) follows
from its definition,

K1,2,3(v) =
{

w ∈ V1 ⊗ V2 ⊗ V3 :
2

∑

i=1

2
∑

j=1

vijkwijl = 0, k, l ∈ {1, 2};

2
∑

i=1

2
∑

k=1

vijkwilk = 0, j, l ∈ {1, 2};
2

∑

j=1

2
∑

k=1

vijkwljk = 0, i, l ∈ {1, 2}
}

,

which we leave for the reader as an exercise.
Our task now is to find all allowed values for the dimensions of the kernels among their

possible values given by

0 ≤ dimKi(v) ≤ 2, i ∈ {1, 2, 3},

0 ≤ dimKj,k(v) ≤ 4, (j, k) ∈ {(1, 2), (1, 3), (2, 3)},

0 ≤ dimK1,2,3(v) ≤ 8.

We consider the following cases:
Case 1: Let dimK1(v) = 2. This means that w in the definition of K1(v) is arbitrary.

Since w satisfies 4 constraint equations, we find that the equations are over-constrained
unless v = 0. This leads to

dimK1(v) = dimK2(v) = dimK3(v) = 2,

dimK1,2(v) = dimK1,3(v) = dimK2,3(v) = 4,

dimK1,2,3(v) = 8

and gives the class C0.
Case 2: Let dimK1(v) = 1, which implies v 6= 0. This means that w in the definition of

K1(v) satisfies

c1w1 + c2w2 = 0

for some constants c1 and c2. Solving for w2 and substituting into the K1(v) equations leads
to

v211

v111
=

v212

v112
=

v221

v121
=

v222

v122
.

Using these results in the K2(v) equations, we find

v111w1 + v121w2 = 0,
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v112w1 + v122w2 = 0.

This allows three possibilities:
Case 2.1: Let dimK2(v) = 2. This implies v111 = v121 = v112 = v122 = 0, which

contradicts the requirement v 6= 0.
Case 2.2: Let dimK2(v) = 1. This implies

c′1w1 + c′2w2 = 0

for some constants c′1 and c′2. Using this equation in the remaining two K2(v) equations, we
find

v121

v111
=

v122

v112
.

Using these results in the K3(v) equations, we find they reduce to a single independent
equation

v111w1 + v112w2 = 0.

Hence dimK3(v) = 1. Now using the above results in the K1,2(v), K1,3(v), K2,3(v), we find
that there is only one constraint for each of these kernels,

v2111w11 + v111v121w12 + v111v211w21 + v121v211w22 = 0, w ∈ K1,2(v),

v2111w11 + v111v112w12 + v111v211w21 + v112v211w22 = 0, w ∈ K1,3(v),

v2111w11 + v111v112w12 + v111v121w21 + v112v121w22 = 0, w ∈ K2,3(v).

Since there is one constraint for each 4-dimensional vector w, we conclude dimK1,2(v) =
dimK1,3(v) = dimK2,3(v) = 3.

Finally we turn to K1,2,3(v). After some straightforward algebra, 12 equations in the
definition of K1,2,3(v) reduce to

w112 = −
1

v2111
(v111v121w122 + v111v211w212 + v121v211w222),

w121 = −
1

v2111
(v111v112w122 + v111v211w221 + v112v211w222),

w211 = −
1

v2111
(v111v112w212 + v111v121w221 + v112v121w222),

v2111w111 − v112v121w122 − v112v211w212 − v121v211w221 − 2
v112v121v211

v111
w222 = 0,

from which we read off dimK1,2,3(v) = 4. This is the class C1.
Case 2.3: Let dimK2(v) = 0. Algebra similar to what we have encountered above leads

to the result dimK3(v) = 0, dimK1,2(v) = 2, dimK1,3(v) = 2, dimK2,3(v) = 3, and
dimK1,2,3(v) = 3. There are also two more Cases 2.3′ and 2.3′′, where we cyclically permute
indices 1, 2 and 3. We obtain the classes C2, C3, C4.

Case 3: Here a similar analysis shows that we can have dimK1(v) = dimK2(v) =
dimK3(v) = 0 and dimK1,2(v) = dimK1,3(v) = dimK2,3(v) = 2 with two subcases.

Case 3.1: dimK1,2,3(v) = 1, which is the class C5.
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Case 3.2: dimK1,2,3(v) = 0, which is the class C6.
This completes the list of the full set of allowed values of the linear invariants and the

resulting equivalence classes for 3 qubits. These results are summarized in Table IV when
we set d = 2 there.
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