83 research outputs found

    Transport studies in laser plasma interactions

    Get PDF
    Imperial Users onl

    Progress on the development of a single line of sight x-ray framing camera

    Get PDF
    High-speed micro-strip micro-channel plate (MCP) x-ray framing cameras are a well established diagnostic for laser plasma experiments. Each frame acquired with these devices requires a separate image, and with most reasonable x-ray optics, a separate line of sight, causing potential parallax problems. Gated image tubes have a single line of sight capability, but the conventional designs have not been effectively extended to the short gating times of the micro-strip-line MCP camera. A hybrid camera combining image tube and micro-strip-line MCP technology has been under development at LLNL in collaboration with UR/LLE, and KENTECH Instruments. The key feature of this single line of sight (SLOS) hybrid image tube is a deflection assembly that continuously divides the electrons from a single photocathode x-ray image into a set of four electron images. Temporal gating of these images is carried out using a microstripline microchannel plate framing camera module positioned at the image plane of the electron tube. Characterization measurements performed using both X-rays from a Manson source and from laser generated plasmas, will be presented. Some implementation improvements will be discussed. The results will be compared to simulations carried out using the charged particle optics code SIMION. Various dissector designs were simulated in an effort to improve the image quality of the system

    Scheduling in an Ethernet Fronthaul Network

    Get PDF
    This paper investigates and compares the performance of different scheduling techniques in an Ethernet fronthaul network in the presence of both time-sensitive/high priority and background traffic streams. A switched Ethernet architecture is used as the fronthaul section of a cloud radio access network (C-RAN) and a comparison of two scheduling schemes, strict priority scheduling and time-aware shaping, is carried out. The different streams are logically separated using virtual local area network identifiers and contend for the use of trunk links formed between aggregator/switch nodes. The scheduling schemes are applied in the access and trunk ports in the fronthaul, and need to handle the queue management and prioritization of the different streams. In such cases, contention induced latency variation has to be characterized, especially when the fronthaul transports precision time protocol traffic, as it directly leads to errors in timestamping. OPNET models for strict priority and time-aware schedulers have been built and employed, and simulation results are used to compare the performance of the two scheduling schemes

    Telomere dynamics in wild banded mongooses: Evaluating longitudinal and quasi-longitudinal markers of senescence

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Telomere length and the rate of telomere shortening have been suggested as particularly useful physiological biomarkers of the processes involved in senescent decline of somatic and reproductive function. However, longitudinal data on changes in telomere length across the lifespan are difficult to obtain, particularly for long-lived animals. Quasi-longitudinal studies have been proposed as a method to gain insight into telomere dynamics in long-lived species. In this method, minimally replicative cells are used as the baseline telomere length against which telomere length in highly replicative cells (which represent the current state) can be compared. Here we test the assumptions and predictions of the quasi-longitudinal approach using longitudinal telomere data in a wild cooperative mammal, the banded mongoose, Mungos mungo. Contrary to our prediction, telomere length (TL) was longer in leukocytes than in ear cartilage. Longitudinally, the TL of ear cartilage shortened with age, but there was no change in the TL of leukocytes, and we also observed many individuals in which TL increased rather than decreased with age. Leukocyte TL but not cartilage TL was a predictor of total lifespan, while neither predicted post-sampling survival. Our data do not support the hypothesis that cross-tissue comparison in TL can act as a quasi-longitudinal marker of senescence. Rather, our results suggest that telomere dynamics in banded mongooses are more complex than is typically assumed, and that longitudinal studies across whole life spans are required to elucidate the link between telomere dynamics and senescence in natural populations.The research was funded by a European Research Council Consolidator’s Grant (no. 309249) to MAC and a Natural Environment Research Council (UK) Standard Grant (NE/G019657/1) to MAC and JDB

    The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man
    • …
    corecore