791 research outputs found

    Dynamic concentration of motors in microtubule arrays

    Full text link
    We present experimental and theoretical studies of the dynamics of molecular motors in microtubule arrays and asters. By solving a convection-diffusion equation we find that the density profile of motors in a two-dimensional aster is characterized by continuously varying exponents. Simulations are used to verify the assumptions of the continuum model. We observe the concentration profiles of kinesin moving in quasi two-dimensional artificial asters by fluorescent microscopy and compare with our theoretical results.Comment: 4pages, 4 figures revte

    The homotopy theory of simplicial props

    Full text link
    The category of (colored) props is an enhancement of the category of colored operads, and thus of the category of small categories. In this paper, the second in a series on "higher props," we show that the category of all small colored simplicial props admits a cofibrantly generated model category structure. With this model structure, the forgetful functor from props to operads is a right Quillen functor.Comment: Final version, to appear in Israel J. Mat

    Quasi-simultaneous observations of the BL Lac object MK 501 in X-ray, UV, visible, IR and radio frequencies

    Get PDF
    Quasi-simultaneous observations of the BL Lacertae (Lac) objects MK 501 were performed for the first time at X-ray, ultraviolet, visible, infrared, and radio frequencies. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical radio emission can not be accounted for by a single power law. Several theoretical models were considered for the emission mechanism. A quantitative comparison was performed with the synchrotron-self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object is underestimated by a factor of about three or four

    A residence-time analysis of enzyme kinetics

    Full text link

    Validity of Critical Velocity Concept for Weighted Sprinting Performance

    Get PDF
    International Journal of Exercise Science 11(4): 900-909, 2018. We investigated the validity of a recently developed equation for predicting sprinting times of various tactical loads based upon the performance of a running 3-min all-out exercise test (3MT). Thirteen recreationally trained participants completed the running 3MT to determine critical velocity (CV) and finite running capacity for running velocities exceeding CV (D’). Two subsequent counterbalanced loaded sprints of 800 and 1000 m distances with 20 and 15% of their body mass, respectively, were evaluated. Estimated times (t, sec) for running 800 and 1000 m with a tactical load was derived using t = (D – D’)/CV. Critical velocity adjusted for an added load using the following regression equation: original CV + (-0.0638 x %load) + 0.6982, D was 800 or 1000 m, and whole percentage load was ~15 or 20% of the participant\u27s body mass. From the 3MT, CV (3.80 ±0.5 m.s-1) and D’(200 ±49.88 m) values were determined.The typical error of predicting actual times for the 800 and 1000 m loaded sprints were 5.6 and 10.1 s, with corresponding ICCs of 0.95 and 0.87, and coefficient of variations of 2.9 and 4.3%. The effect size differences between estimated and actual sprint times were small (0.27) and moderate (0.60) for 800 and 1000 m, respectively. The adjustment to CV through the regression equation yields small to moderate overestimates of maximally loaded sprint times for distances of 800 and 1000 m. Whether such errors remain pervasive for prescribing high-intensity interval training is unclear and requires further investigation

    Modulation of outer bank erosion by slump blocks: Disentangling the protective and destructive role of failed material on the three-dimensional flow structure

    Get PDF
    The three-dimensional flow field near the banks of alluvial channels is the primary factor controlling rates of bank erosion. Although submerged slump blocks and associated large-scale bank roughness elements have both previously been proposed to divert flow away from the bank, direct observations of the interaction between eroded bank material and the 3-D flow field are lacking. Here we use observations from multibeam echo sounding, terrestrial laser scanning, and acoustic Doppler current profiling to quantify, for the first time, the influence of submerged slump blocks on the near-bank flow field. In contrast to previous research emphasizing their influence on flow diversion away from the bank, we show that slump blocks may also deflect flow onto the bank, thereby increasing local shear stresses and rates of erosion. We use our measurements to propose a conceptual model for how submerged slump blocks interact with the flow field to modulate bank erosion.UK Natural Environment Research Council (NERC
    • …
    corecore