286 research outputs found
Recommended from our members
Steering magnet design for a limited space
We compare two extreme designs of steering magnets. The first one is a very thin steering magnet design which occupies only 6 mm in length and can be additionally installed as needed. The other is realized by applying extra coil windings to a quadrupole magnet and does not consume any length. The properties and the features of these steering magnets are discussed
Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation.
Both adjuvants and focal ablation can alter the local innate immune system and trigger a highly effective systemic response. Our goal is to determine the impact of these treatments on directly treated and distant disease and the mechanisms for the enhanced response obtained by combinatorial treatments. Methods: We combined RNA-sequencing, flow cytometry and TCR-sequencing to dissect the impact of immunotherapy and of immunotherapy combined with ablation on local and systemic immune components. Results: With administration of a toll-like receptor agonist agonist (CpG) alone or CpG combined with same-site ablation, we found dramatic differences between the local and distant tumor environments, where the directly treated tumors were skewed to high expression of F4/80, Cd11b and Tnf and the distant tumors to enhanced Cd11c, Cd3 and Ifng. When ablation was added to immunotherapy, 100% (n=20/20) of directly treated tumors and 90% (n=18/20) of distant tumors were responsive. Comparing the combined ablation-immunotherapy treatment to immunotherapy alone, we find three major mechanistic differences. First, while ablation alone enhanced intratumoral antigen cross-presentation (up to ~8% of CD45+ cells), systemic cross-presentation of tumor antigen remained low. Combining same-site ablation with CpG amplified cross-presentation in the draining lymph node (~16% of CD45+ cells) compared to the ablation-only (~0.1% of CD45+ cells) and immunotherapy-only cohorts (~10% of CD45+ cells). Macrophages and DCs process and present this antigen to CD8+ T-cells, increasing the number of unique T-cell receptor rearrangements in distant tumors. Second, type I interferon (IFN) release from tumor cells increased with the ablation-immunotherapy treatment as compared with ablation or immunotherapy alone. Type I IFN release is synergistic with toll-like receptor activation in enhancing cytokine and chemokine expression. Expression of genes associated with T-cell activation and stimulation (Eomes, Prf1 and Icos) was 27, 56 and 89-fold higher with ablation-immunotherapy treatment as compared to the no-treatment controls (and 12, 32 and 60-fold higher for immunotherapy-only treatment as compared to the no-treatment controls). Third, we found that the ablation-immunotherapy treatment polarized macrophages and dendritic cells towards a CD169 subset systemically, where CD169+ macrophages are an IFN-enhanced subpopulation associated with dead-cell antigen presentation. Conclusion: While the local and distant responses are distinct, CpG combined with ablative focal therapy drives a highly effective systemic immune response
Comparing various multi-component global heliosphere models
Modeling of the global heliosphere seeks to investigate the interaction of
the solar wind with the partially ionized local interstellar medium. Models
that treat neutral hydrogen self-consistently and in great detail, together
with the plasma, but that neglect magnetic fields, constitute a sub-category
within global heliospheric models. There are several different modeling
strategies used for this sub-category in the literature. Differences and
commonalities in the modeling results from different strategies are pointed
out. Plasma-only models and fully self-consistent models from four research
groups, for which the neutral species is modeled with either one, three, or
four fluids, or else kinetically, are run with the same boundary parameters and
equations. They are compared to each other with respect to the locations of key
heliospheric boundary locations and with respect to the neutral hydrogen
content throughout the heliosphere. In many respects, the models' predictions
are similar. In particular, the locations of the termination shock agree to
within 7% in the nose direction and to within 14% in the downwind direction.
The nose locations of the heliopause agree to within 5%. The filtration of
neutral hydrogen from the interstellar medium into the inner heliosphere,
however, is model dependent, as are other neutral results including the
hydrogen wall. These differences are closely linked to the strength of the
interstellar bow shock. The comparison also underlines that it is critical to
include neutral hydrogen into global heliospheric models.Comment: 10 pages, 4 figures, submitted to a special section at A&A of an ISSI
team "Determination of the physical Hydrogen parameters of the LIC from
within the Heliosphere
Nonthermal Emission from a Supernova Remnant in a Molecular Cloud
In evolved supernova remnants (SNRs) interacting with molecular clouds, such
as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a
forward shock of moderate Mach number, a cooling layer, a dense radiative shell
and an interior region filled with hot tenuous plasma is expected. We present a
kinetic model of nonthermal electron injection, acceleration and propagation in
that environment and find that these SNRs are efficient electron accelerators
and sources of hard X- and gamma-ray emission. The energy spectrum of the
nonthermal electrons is shaped by the joint action of first and second order
Fermi acceleration in a turbulent plasma with substantial Coulomb losses.
Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal
electrons produce multiwavelength photon spectra in quantitative agreement with
the radio and the hard emission observed by ASCA and EGRET from IC 443. We
distinguish interclump shock wave emission from molecular clump shock wave
emission accounting for a complex structure of molecular cloud. Spatially
resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and
3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST
would distinguish the contribution of the energetic lepton component to the
gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press
Recommended from our members
Development of frequency-agile high-repetition-rate CO{sub 2} DIAL systems for long range chemical remote sensing
Issues related to the development of direct detection, long-range CO{sub 2} DIAL systems for chemical detection and identification are presented and discussed including: data handling and display techniques for large, multi-{lambda} data sets, turbulence effects, slant path propagation, and speckle averaging. Data examples from various field campaigns and CO{sub 2} lidar platforms are used to illustrate the issues
Recommended from our members
Results of LEBT/MEBT reconfiguration at BNL 200 MeV LINAC
The low energy (35 keV) and medium energy (750 keV) transport lines for both polarized and unpolarized H{sup -} have been reconfigured to reduce the beam emittance and beam losses out of the 200 MeV Linac. The medium energy line in the original layout was 7 m long, and had ten quadrupoles, two beam choppers, and three bunchers. The bunchers were necessary to keep the beam bunched at the entrance of the Linac. About 35% beam loss occurred, and the emittance growth was several fold. In the new layout, the 750 keV line is only 0.7 m long, with three quads and one buncher. We will present the experimental result of the upgrade
A magnetization and B NMR study of MgAlB superconductors
We demonstrate for the first time the magnetic field distribution of the pure
vortex state in lightly doped MgAlB () powder
samples, by using B NMR in magnetic fields of 23.5 and 47 kOe. The
magnetic field distribution at T=5 K is Al-doping dependent, revealing a
considerable decrease of anisotropy in respect to pure MgB. This result
correlates nicely with magnetization measurements and is consistent with
-band hole driven superconductivity for MgB
Can the Future Influence the Present?
One widely accepted model of classical electrodynamics assumes that a moving charged particle produces both retarded and advanced fields. This formulation first appeared at least 75 years ago. It was popularized in the 1940\u27s by work of Wheeler and Feynman. But the most fundamental question associated with the model has remained unanswered: When (if ever) does the two-body problem have a unique solution? The present paper gives an answer in one special case. Imagine two identical charged particles alone in the universe moving symmetrically along the x axis. One is at x(t) and the other is at −x(t). Their motion is then governed by a system of functional differential equations involving both retarded and advanced arguments. This system together with the Newtonian initial data x(0)=x0\u3e0 and x′(0)=0 has a unique solution for all time provided x0 is sufficiently large. Perhaps the existence and uniqueness proof given for this special case will pave the way for more general results on this curious two-body problem
The effects of a kappa-distribution in the heliosheath on the global heliosphere and ENA flux at 1 AU
We investigate heliosheath energetic neutral atom (ENA) fluxes at keV
energies, by assuming that the heliosheath proton distribution can be
approximated by a kappa-distribution. The choice of the kappa parameter derives
from observational data of the solar wind (SW). This has direct applications to
the upcoming IBEX mission. We will look at all-sky ENA maps within the IBEX
energy range (10 eV to 6 keV), as well as ENA energy spectra in several
directions. We find that the use of kappa, as opposed to a Maxwellian, gives
rise to greatly increased ENA fluxes above 1 keV, while medium energy fluxes
are somewhat reduced. We show how IBEX data can be used to estimate the
spectral slope in the heliosheath, and that the use of kappa reduces the
differences between ENA maps at different energies. We also investigate the
effect introducing a kappa-distribution has on the global interaction between
the SW and the local interstellar medium (LISM), and find that there is
generally an increase in energy transport from the heliosphere into the LISM,
due to the modified profile of ENA's energies. This results in a termination
shock that moves out by 4 AU, a heliopause that moves in by 9 AU and a bow
shock 25 AU farther out, in the nose direction
Site-selective nuclear magnetic relaxation time in a superconducting vortex state
The temperature and field dependences of the site-selective nuclear spin
relaxation time T_1 around vortices are studied comparatively both for s-wave
and d-wave superconductors, based on the microscopic Bogoliubov-de Gennes
theory. Reflecting low energy electronic excitations associated with the vortex
core, the site selective temperature dependences deviate from those of the
zero-field case, and T_1 becomes faster with approaching the vortex core. In
the core region, T_1^{-1} has a new peak below the superconducting transition
temperature T_c. The field dependence of the overall T_1(T) behaviors for
s-wave and d-wave superconductors is investigated and analyzed in terms of the
local density of states. The NMR study by the resonance field dependence may be
a new method to probe the spatial resolved vortex core structure in various
conventional and unconventional superconductors.Comment: 14Pages, 26 figures, revte
- …