Modeling of the global heliosphere seeks to investigate the interaction of
the solar wind with the partially ionized local interstellar medium. Models
that treat neutral hydrogen self-consistently and in great detail, together
with the plasma, but that neglect magnetic fields, constitute a sub-category
within global heliospheric models. There are several different modeling
strategies used for this sub-category in the literature. Differences and
commonalities in the modeling results from different strategies are pointed
out. Plasma-only models and fully self-consistent models from four research
groups, for which the neutral species is modeled with either one, three, or
four fluids, or else kinetically, are run with the same boundary parameters and
equations. They are compared to each other with respect to the locations of key
heliospheric boundary locations and with respect to the neutral hydrogen
content throughout the heliosphere. In many respects, the models' predictions
are similar. In particular, the locations of the termination shock agree to
within 7% in the nose direction and to within 14% in the downwind direction.
The nose locations of the heliopause agree to within 5%. The filtration of
neutral hydrogen from the interstellar medium into the inner heliosphere,
however, is model dependent, as are other neutral results including the
hydrogen wall. These differences are closely linked to the strength of the
interstellar bow shock. The comparison also underlines that it is critical to
include neutral hydrogen into global heliospheric models.Comment: 10 pages, 4 figures, submitted to a special section at A&A of an ISSI
team "Determination of the physical Hydrogen parameters of the LIC from
within the Heliosphere