8,926 research outputs found

    Fracture characteristics of structural aerospace alloys containing deep surface flaws

    Get PDF
    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions

    Hard X‐ray polarimetry of solar flares with BATSE

    Get PDF
    We describe a technique for measuring the polarization of hard X‐rays from solar flares based on the angular distribution of that portion of the flux which is scattered off the top of the Earth’s atmosphere. The scattering cross section depends not only on the scatter angle itself, but on the orientation of the scatter angle with respect to the incident polarization vector. Consequently, the distribution of the observed albedo flux will depend on the direction and the polarization properties (i.e., the level of polarization and polarization angle) of the source. Since the albedo component can represent a relatively large fraction (up to 40%) of the direct source flux, there will generally be sufficient signal for making such a measurement. The sensitivity of this approach is therefore dictated by the effective area and the ability of a detector system to ‘image’ the albedo flux. The 4π coverage of the BATSE detectors on the Compton Gamma‐RayObservatory provides an opportunity to measure both the direct and the albedo flux from a given solar flare event. Although the BATSE design (with its large field‐of‐view for each detector) is not optimized for albedo polarimetry, we have nonetheless investigated the feasibility of this technique using BATSE data

    Using BATSE to measure gamma-ray burst polarization

    Get PDF
    We describe a technique for measuring the polarization of hard x-rays from γ-ray bursts based on the angular distribution of that portion of the flux which is scattered off the top of the Earth’s atmosphere. The scattering cross section depends not only on the scatter angle itself, but on the orientation of the scatter angle with respect to the incident polarization vector. Consequently, the distribution of the observed albedo flux will depend on the direction and the polarization properties (i.e., the level of polarization and polarization angle) of the source. Although the BATSE design (with its large field-of-view for each detector) is not optimized for albedo polarimetry, we have nonetheless investigated the feasibility of this technique using BATSE data

    Discovery of Pulsed X-ray Emission from the SMC Transient RX J0117.6-7330

    Get PDF
    We report on the detection of pulsed, broad-band, X-ray emission from the transient source RX J0117.6-7330. The pulse period of 22 seconds is detected by the ROSAT/PSPC instrument in a 1992 Sep 30 - Oct 2 observation and by the CGRO/BATSE instrument during the same epoch. Hard X-ray pulsations are detectable by BATSE for approximately 100 days surrounding the ROSAT observation (1992 Aug 28 - Dec 8). The total directly measured X-ray luminosity during the ROSAT observation is 1.0E38 (d/60 kpc)^2 ergs s-1. The pulse frequency increases rapidly during the outburst, with a peak spin-up rate of 1.2E-10 Hz s-1 and a total frequency change 1.8%. The pulsed percentage is 11.3% from 0.1-2.5 keV, increasing to at least 78% in the 20-70 keV band. These results establish RX J0117.6-7330 as a transient Be binary system.Comment: 17 pages, Latex, aasms, accepted for publication in ApJ Letter

    Imaging and burst location with the EXIST high-energy telescope

    Full text link
    The primary instrument of the proposed EXIST mission is a coded mask high energy telescope (the HET), that must have a wide field of view and extremely good sensitivity. It will be crucial to minimize systematic errors so that even for very long total integration times the imaging performance is close to the statistical photon limit. There is also a requirement to be able to reconstruct images on-board in near real time in order to detect and localize gamma-ray bursts. This must be done while the spacecraft is scanning the sky. The scanning provides all-sky coverage and is key to reducing systematic errors. The on-board computational problem is made even more challenging for EXIST by the very large number of detector pixels. Numerous alternative designs for the HET have been evaluated. The baseline concept adopted depends on a unique coded mask with two spatial scales. Monte Carlo simulations and analytic analysis techniques have been used to demonstrate the capabilities of the design and of the proposed two-step burst localization procedure

    Moody's Correlated Binomial Default Distributions for Inhomogeneous Portfolios

    Full text link
    This paper generalizes Moody's correlated binomial default distribution for homogeneous (exchangeable) credit portfolio, which is introduced by Witt, to the case of inhomogeneous portfolios. As inhomogeneous portfolios, we consider two cases. In the first case, we treat a portfolio whose assets have uniform default correlation and non-uniform default probabilities. We obtain the default probability distribution and study the effect of the inhomogeneity on it. The second case corresponds to a portfolio with inhomogeneous default correlation. Assets are categorized in several different sectors and the inter-sector and intra-sector correlations are not the same. We construct the joint default probabilities and obtain the default probability distribution. We show that as the number of assets in each sector decreases, inter-sector correlation becomes more important than intra-sector correlation. We study the maximum values of the inter-sector default correlation. Our generalization method can be applied to any correlated binomial default distribution model which has explicit relations to the conditional default probabilities or conditional default correlations, e.g. Credit Risk+{}^{+}, implied default distributions. We also compare some popular CDO pricing models from the viewpoint of the range of the implied tranche correlation.Comment: 29 pages, 17 figures and 1 tabl

    The pre-outburst flare of the A 0535+26 August/September 2005 outburst

    Get PDF
    We study the spectral and temporal behavior of the High Mass X-ray Binary A 0535+26 during a `pre-outburst flare' which took place ~5 d before the peak of a normal (type I) outburst in August/September 2005. We compare the studied behavior with that observed during the outburst. We analyse RXTE observations that monitored A 0535+26 during the outburst. We complete spectral and timing analyses of the data. We study the evolution of the pulse period, present energy-dependent pulse profiles both at the initial pre-outburst flare and close to outburst maximum, and measure how the cyclotron resonance-scattering feature (hereafter CRSF) evolves. We present three main results: a constant period P=103.3960(5)s is measured until periastron passage, followed by a spin-up with a decreasing period derivative of Pdot=(-1.69+/-0.04)x10^(-8)s/s at MJD 53618, and P remains constant again at the end of the main outburst. The spin-up provides evidence for the existence of an accretion disk during the normal outburst. We measure a CRSF energy of Ecyc~50kev during the pre-outburst flare, and Ecyc~46kev during the main outburst. The pulse shape, which varies significantly during both pre-outburst flare and main outburst, evolves strongly with photon energy.Comment: 4 pages, 4 figures, accepted for publication in A&A Letters. To be published in parallel to Postnov et al. 200

    Discovery of 16.6 and 25.5 s Pulsations from the Small Magellanic Cloud

    Get PDF
    We report the serendipitous detection of two previously unreported pulsars from the direction of the Small Magellanic Cloud, with periods of 16.6 and 25.5 seconds. The detections are based on archival PCA data from the Rossi X-ray Timing Explorer (RXTE). The observation leading to these detections occurred in September 2000 extending over 2.1 days with an exposure of 121 ks. A possible identification of the 16.6 s pulsar with an X-ray source RX J0051.8-7310 seen by both ROSAT and ASCA imaging X-ray satellites is presented.Comment: 9 pages with 3 figures. Submitted to ApJ Letter

    Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives

    Get PDF
    Recent theoretical and experimental studies highlight the possibility of new fundamental particle physics beyond the Standard Model that can be probed by sub-eV energy experiments. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" (LSW) from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or axion-like particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. No excess of events has been detected over the background. The di-photon couplings of possible new light scalar and pseudo-scalar particles can be constrained in the massless limit to be less than 8.0×10−88.0\times10^{-8} GeV−1^{-1}. These results are very close to the most stringent laboratory constraints obtained for the coupling of ALPs to two photons. Plans for further improving the sensitivity of the OSQAR experiment are presented.Comment: 7 pages, 7 figure
    • 

    corecore