387 research outputs found

    Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters

    Get PDF
    Plant pest recognition and detection is vital for food security, quality of life and a stable agricultural economy. This research demonstrates the combination of the k-means clustering algorithm and the correspondence filter to achieve pest detection and recognition. The detection of the dataset is achieved by partitioning the data space into Voronoi cells, which tends to find clusters of comparable spatial extents, thereby separating the objects (pests) from the background (pest habitat). The detection is established by extracting the variant distinctive attributes between the pest and its habitat (leaf, stem) and using the correspondence filter to identify the plant pests to obtain correlation peak values for different datasets. This work further establishes that the recognition probability from the pest image is directly proportional to the height of the output signal and inversely proportional to the viewing angles, which further confirmed that the recognition of plant pests is a function of their position and viewing angle. It is encouraging to note that the correspondence filter can achieve rotational invariance of pests up to angles of 360 degrees, which proves the effectiveness of the algorithm for the detection and recognition of plant pests

    Natural control of the mosquito population via Odonata and Toxorhynchites

    Get PDF
    The main impact of mosquito pests is the transmission of many dangerous diseases and death. Hence, the reduction of their population by the use of a natural control method is a primary objective of this research. This mosquito reduction method utilises different species of predators (Odonata) and (Toxorhynchites) to substantially improve the environment. The frequency of capturing the pest mosquitoes by the predators is determined using a Pascal distribution, whilst insect mortality is modelled using a Weibull distribution. The results from the model show that by using insect predators, a significant reduction of the mosquito population is possible in less than eighty days

    Illumination invariant stationary object detection

    Get PDF
    A real-time system for the detection and tracking of moving objects that becomes stationary in a restricted zone. A new pixel classification method based on the segmentation history image is used to identify stationary objects in the scene. These objects are then tracked using a novel adaptive edge orientation-based tracking method. Experimental results have shown that the tracking technique gives more than a 95% detection success rate, even if objects are partially occluded. The tracking results, together with the historic edge maps, are analysed to remove objects that are no longer stationary or are falsely identified as foreground regions because of sudden changes in the illumination conditions. The technique has been tested on over 7 h of video recorded at different locations and time of day, both outdoors and indoors. The results obtained are compared with other available state-of-the-art methods

    Healthcare, frugal innovation, and professional voluntarism : a cost-benefit analysis

    Get PDF
    This book investigates what international placements of healthcare employees in low resource settings add to the UK workforce and the efficacy of its national health system. The authors present empirical data collected from a volunteer deployment project in Uganda focused on reducing maternal and new-born mortality and discuss the learning and experiential outcomes for UK health care professionals acting as long term volunteers in low resource settings. They also develop a model for structured placement that offers optimal learning and experiential outcomes and minimizes risk, while shedding new light on the role that international placements play as part of continuing professional development both in the UK and in other sending countries

    Comparison of Howland and General Impedance Converter (GIC) circuit based current sources for bio-impedance measurements

    Get PDF
    The current source is a key component in bio-impedance measurement systems. The accuracy of the current source can be measured in terms of its output impedance together with other parameters, with certain applications demanding extremely high output impedance. This paper presents an investigation and comparison of different current source designs based on the Enhanced Howland circuit combined with a General Impedance Converter (GIC) circuit using both ideal and non-ideal operational amplifiers. Under differing load conditions two different settings of the GIC are evaluated and the results are compared to show its performance settings. Whilst the study has shown that over a wide bandwidth (i.e. 100Hz-100MHz) the output impedance is limited, operation over a more limited range offers output impedance in the Giga-ohm range, which can be considered as being infinite

    Influence of the disorder on tracer dispersion in a flow channel

    Get PDF
    Tracer dispersion is studied experimentally in periodic or disordered arrays of beads in a capillary tube. Dispersion is measured from light absorption variations near the outlet following a steplike injection of dye at the inlet. Visualizations using dye and pure glycerol are also performed in similar geometries. Taylor dispersion is dominant both in an empty tube and for a periodic array of beads: the dispersivity l_dl\_d increases with the P\'eclet number PePe respectively as PePe and Pe0.82Pe^{0.82} and is larger by a factor of 8 in the second case. In a disordered packing of smaller beads (1/3 of the tube diameter) geometrical dispersion associated to the disorder of the flow field is dominant with a constant value of l_dl\_d reached at high P\'eclet numbers. The minimum dispersivity is slightly higher than in homogeneous nonconsolidated packings of small grains, likely due heterogeneities resulting from wall effects. In a disordered packing with the same beads as in the periodic configuration, l_dl\_d is up to 20 times lower than in the latter and varies as PeαPe^\alpha with α=0.5\alpha = 0.5 or =0.69= 0.69 (depending on the fluid viscosity). A simple model accounting for this latter result is suggested.Comment: available online at http://www.edpsciences.org/journal/index.cfm?edpsname=epjap&niv1=contents&niv2=archive

    Targeting the life cycle stages of the Diamond Black Moth (Plutella Xylostella) with three different parasitoid wasps

    Get PDF
    A continuous time model of the interaction between crop insect pests and naturally beneficial pest enemies is created using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull distribution. The crop pest is present in all its life-cycle stages of: egg, larva, pupa and adult. The beneficial insects, parasitoid wasps, may be present in either or all parasitized: eggs, larva and pupa. Population modelling is used to estimate the quantity of the natural pest enemies that should be introduced into the pest infested environment to suppress the pest population density to an economically acceptable level within a prescribed number of days. The results obtained illustrate the effect of different combinations of parasitoid wasps, using the Pascal distribution to estimate their success in parasitizing different pest developmental stages, to deliver pest control to a sustainable level. Effective control, within a prescribed number of days, is established by the deployment of two or all three species of wasps, which partially destroy pest: egg, larvae and pupae stages. The selected scenarios demonstrate effective sustainable control of the pest in less than thirty days

    Sustainable control of taro beetles via scoliid wasps and Metarhizium anisopliae

    Get PDF
    Taro Scarab beetles (Papuana uninodis, Coleoptera: Scarabaeidae) inflict severe damage on important root crops and plants such as Taro or Cocoyam, yam, sweet potatoes, oil palm and coffee tea plants across Africa and Asia resulting in economic hardship and starvation in some nations. Scoliid wasps and Metarhizium anisopliae fungus - bio-control agents; are shown to be able to control the population of Scarab beetle adults and larvae using a newly created simulation model based on non-linear ordinary differential equations that track the populations of the beetle life cycle stages: egg, larva, pupa, adult and the population of the scoliid parasitoid wasps, which attack beetle larvae. In spite of the challenge driven by the longevity of the scarab beetles, the combined effect of the larval wasps and the fungal bio-control agent is able to control and drive down the population of both the adult and the beetle eggs below the environmental carrying capacity within an interval of 120 days, offering the long term prospect of a stable and eco-friendly environment; where the population of scarab beetles is: regulated by parasitoid wasps and beneficial soil saprophytes

    Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    Get PDF
    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight
    • 

    corecore