91 research outputs found
Recommended from our members
The frequency of cortical microstimulation shapes artificial touch
Intracortical microstimulation (ICMS) of the somatosensory cortex evokes vivid tactile sensations and can be used to convey sensory feedback from brain-controlled bionic hands. Changes in ICMS frequency lead to changes in the resulting sensation, but the discriminability of frequency has only been investigated over a narrow range of low frequencies. Furthermore, the sensory correlates of changes in ICMS frequency remain poorly understood. Specifically, it remains to be elucidated whether changes in frequency only modulate sensation magnitude - as do changes in amplitude - or whether they also modulate the quality of the sensation. To fill these gaps, we trained monkeys to discriminate the frequency of ICMS pulse trains over a wide range of frequencies (from 10 to 400 Hz). ICMS amplitude also varied across stimuli to dissociate sensation magnitude from ICMS frequency and ensure that animals could not make frequency judgments based on magnitude. We found that animals could consistently discriminate ICMS frequency up to ∼200 Hz but that the sensory correlates of frequency were highly electrode dependent: On some electrodes, changes in frequency were perceptually distinguishable from changes in amplitude - seemingly giving rise to a change in sensory quality; on others, they were not. We discuss the implications of our findings for neural coding and for brain-controlled bionic hands. © 2020 National Academy of Sciences. All rights reserved
On an ordering-dependent generalization of Tutte polynomial
A generalization of Tutte polynomial involved in the evaluation of the moments of the integrated geometric Brownian in the Ito formalism is discussed. The new combinatorial invariant depends on the order in which the sequence of contraction-deletions have been performed on the graph. Thus, this work provides a motivation for studying an order-dependent Tutte polynomial in the context of stochastic differential equations. We show that in the limit of the control parameters encoding the ordering going to zero, the multivariate Tutte-Fortuin-Kasteleyn polynomial is recovered
How production networks amplify economic growth
Technological improvement is the most important cause of long-term economic growth. We study the effects of technology improvement in the setting of a production network, in which each producer buys input goods and converts them to other goods, selling the product to households or other producers. We show how this network amplifies the effects of technological improvements as they propagate along chains of production. Longer production chains for an industry bias it towards faster price reduction, and longer production chains for a country bias it towards faster GDP growth. These predictions are in good agreement with data and improve with the passage of time, demonstrating a key influence of production chains in price change and output growth over the long term
Hidden symmetries for thermodynamics and emergence of relativity
Erik Verlinde recently proposed an idea about the thermodynamic origin of
gravity. Though this is a beautiful idea which may resolve many long standing
problems in the theories of gravity, it also raises many other problems. In
this article I will comment on some of the problems of Verlinde's proposal with
special emphasis on the thermodynamical origin of the principle of relativity.
It is found that there is a large group of hidden symmetries of thermodynamics
which contains the Poincare group of the spacetime for which space is emergent.
This explains the thermodynamic origin of the principle of relativity.Comment: V1: 4 pages, comments/criticisms welcomed; V2: references added; V3:
typos and minor corrections? V4? substantial changes in Section 3 and other
parts mad
Gravity from the entropy of light
The holographic principle, considered in a semiclassical setting, is shown to
have direct consequences on physics at a fundamental level. In particular, a
certain relation is pointed out to be the expression of holography in basic
thermodynamics. It is argued moreover that through this relation holography can
be recognized to induce gravity, and an expression for the gravitational
lensing is obtained in terms of entropy over wavelength of black-body
radiation, or, at a deeper level, in terms of maximum entropy over associated
space to the elementary bit of information.Comment: 7 pages; v2: completion of the list of references; v3: the discussion
is divided in Sections and the argument is described in more detail; v4: a
statement is added (below eq.13) on what is the supposed difference between
Jacobson's work in ref.21 and this attempt; addition of a paragraph in last
Sectio
Rotation and twist regular modes for trapped ghosts
A parameter-independent notion of stationary slow motion is formulated then
applied to the case of stationary rotation of massless trapped ghosts. The
excitations correspond to a rotation mode with angular momentum and
twist modes. It is found that the rotation mode, which has no parity, causes
excess in the angular velocity of dragged distant coordinate frames in one
sheet of the wormhole while in the other sheet the angular velocity of the
ghosts is that of rotating stars: . As to the twist modes, which all
have parity, they cause excess in the angular velocity of one of the throat's
poles with respect to the other.Comment: 11 pages, 3 figures; General Relativity and Gravitation - 201
Unification of Dark Matter and Dark Energy in a Modified Entropic Force Model
In Verlinde's entropic force scenario of gravity, Newton's laws and Einstein
equations can be obtained from the first pinciples and general assumptions.
However, the equipartition law of energy is invalid at very low temperatures.
We show clearly that the threshold of the equipartition law of energy is
related with horizon of the universe. Thus, a one-dimension Debye (ODD) model
in the direction of radius of the modified entropic force (MEF) maybe suitable
in description of the accelerated expanding universe. We present a Friedmann
cosmic dynamical model in the ODD-MEF framework. We examine carefully
constraints on the ODD-MEF model from the Union2 compilation of the Supernova
Cosmology Project (SCP) collaboration, the data from the observation of the
large-scale structure (LSS) and the cosmic microwave background (CMB), i.e. SNe
Ia+LSS+CMB. The combined numerical analysis gives the best-fit value of the
model parameters and , with
. The corresponding age of the universe agrees with the
result of D. Spergel {\it et al.}\cite{Spergel2003} at 95% confidence level.
The numerical result also yields an accelerated expanding universe without
invoking any kind of dark energy. Taking as a
running parameter associated with the structure scale , we obtain a possible
unified scenario of the asymptotic flatness of the radial velocity dispersion
of spiral galaxies, the accelerated expanding universe and the Pioneer 10/11
anomaly in the entropic force framework of Verlinde.Comment: 23 pages, 6 figure
Microstructural Behaviors of Matrices Based on Polylactic Acid and Polyhydroxyalkanoates
Individual films of polyhydroxyalkanoates (PHA) and polylactic acid (PLA) and their blends were developed by solvent casting. PHA was obtained from activated sludges from a wastewater-treatment system at a laboratory scale. This work focused on analyzing the microstructural properties and thermal behaviors of individual films of PHA and PLA as well as those of their blends. The behaviors of the biodegradation processes of the individual films and blends were examined from a microstructural point of view. ATR-FTIR spectra indicated the existence of weak molecular interactions between the polymers. The formulation of blend films improved the crystallinity of PLA; additionally, it induced the polymer-recrystallization phenomenon, because crystallized PHA acted as a PLA-nucleating agent. This phenomenon explains the improvements in the films´ water-vapor-barrier properties. The blends exposed to a biodegradation process showed an intermediate behavior between PLA and PHA, leading to a consistent basis for designing systems tailored to a particular purpose.Fil: Alzate Marin, Juan Carlos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Rivero, Sandra G. M.. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Pinotti, Adriana Noemi. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Caravelli, Alejandro Horacio. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Zaritzky, Noemi Elisabet. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentin
A Note on Temperature and Energy of 4-dimensional Black Holes from Entropic Force
We investigate the temperature and energy on holographic screens for
4-dimensional black holes with the entropic force idea proposed by Verlinde. We
find that the "Unruh-Verlinde temperature" is equal to the Hawking temperature
on the horizon and can be considered as a generalized Hawking temperature on
the holographic screen outside the horizons. The energy on the holographic
screen is not the black hole mass but the reduced mass , which is
related to the black hole parameters. With the replacement of the black hole
mass by the reduced mass , the entropic force can be written as
, which could be tested by experiments.Comment: V4: 13 pages, 4 figures, title changed, discussions for experiments
added, accepted by CQ
Interests, trust and security in US-Jordanian nuclear relations
This article explores the relationship between Jordan and the United States (US) in the field of nuclear energy cooperation. Since 2010 the Jordanian government has accelerated its plans for a nuclear energy program and has engaged with multiple partners around the world in order to agree terms for cooperation in technology exchange, monitoring, and the construction of infrastructure. Bilateral negotiations between the US and Jordan for a "123" nuclear cooperation agreement were underway by early 2008, but were suspended in 2011 without an agreement being reached. Jordanian nuclear energy policy has been spurred by energy security considerations (as it currently imports 97 percent of its energy needs) and the discovery of up to 120,000 tonnes of uranium ore in Jordan. At the same time, the US is primarily interested in management of nuclear technology proliferation. This work considers the perceptions of self and other in Jordanian and US policymaking in order to understand why bilateral cooperation has not materialized and what this means for nuclear proliferation in Jordan. This study finds that the US–Jordanian negotiations have been impeded by contradictory objectives and perceptions, and a "123" agreement is not likely in the short to medium term, but that development of Jordan’s nuclear energy program will likely continue regardless
- …