5,350 research outputs found

    Austrian model approach to assess quality of post-mortem feedback-information systems in pigs

    Get PDF
    A novel quality assurance approach was tested for its applicability to assess data validity and meat inspection performance by means of modeling and training of official meat inspectors (OMIs). General linear mixed models (GLMM) were used to estimate the variance in 20 selected lesions assessed by 12 official meat inspectors for 247.507 pigs

    Lifestyle of Shellmound Builders in Brazil (galley proofs)

    Get PDF
    The contact of inland and coastal prehistoric groups in Brazil is believed to have been restricted to regions with no geographical barrier, as is the case in the Ribeira de Iguape valley. The inland osteological collection from the riverine shellmound Moraes (5800–4500 BP) represents a unique opportunity to test this assumption for this region. Despite cultural similarities between riverine and coastal shellmounds, important ecological and site distribution differences are expected to impact on lifestyle. The purpose of this study is thus to document and interpret health and lifestyle indicators in Moraes in comparison to coastal shellmound groups. Specifically we test if the rare evidence of fish and mollusc remains in the riverine shellmound led to (a) higher caries rates and (b) lower auditory exostosis frequency and (c) if the small size of the riverine shellmound translates into reduced demographic density and thus rarity of communicable infectious diseases. Of the three hypotheses, (a) was confirmed, (b) was rejected and (c) was partly rejected. Bioanthropological similarities between Moraes and coastal shellmounds include auditory exostoses with equally high frequencies; significantly more frequent osteoarthritis in upper than in lower limbs; cranial and dental morphological affinities and low frequencies of violent trauma. However, there are also important differences: Moraes subsisted on a much broader protein diet and consumed more cariogenic food, but showed a stature even shorter than coastal groups. Thus, despite the contact also suggested by treponematoses in both site types, there was enough time for the people at the riverine site to adapt to local conditions

    Temporal and spatial dynamics of CO2 air-sea flux in the Gulf of Maine

    Get PDF
    Ocean surface layer carbon dioxide (CO2) data collected in the Gulf of Maine from 2004 to 2008 are presented. Monthly shipboard observations are combined with additional higher‐resolution CO2 observations to characterize CO2 fugacity ( fCO2) and CO2 flux over hourly to interannual time scales. Observed fCO2 andCO2 flux dynamics are dominated by a seasonal cycle, with a large spring influx of CO2 and a fall‐to‐winter efflux back to the atmosphere. The temporal results at inner, middle, and outer shelf locations are highly correlated, and observed spatial variability is generally small relative to the monthly to seasonal temporal changes. The averaged annual flux is in near balance and is a net source of carbon to the atmosphere over 5 years, with a value of +0.38 mol m−2 yr−1. However, moderate interannual variation is also observed, where years 2005 and 2007 represent cases of regional source (+0.71) and sink (−0.11) anomalies. We use moored daily CO2 measurements to quantify aliasing due to temporal undersampling, an important error budget term that is typically unresolved. The uncertainty of our derived annual flux measurement is ±0.26 mol m−2 yr−1 and is dominated by this aliasing term. Comparison of results to the neighboring Middle and South Atlantic Bight coastal shelf systems indicates that the Gulf of Maine exhibits a similar annual cycle and range of oceanic fCO2 magnitude but differs in the seasonal phase. It also differs by enhanced fCO2 controls by factors other than temperature‐driven solubility, including biological drawdown, fall‐to‐winter vertical mixing, and river runoff

    Accuracy of Deoxynucleotide Incorporation by Soybean Chloroplast DNA-Polymerases is Independent of the Presence of a 3\u27 to 5\u27 Exonuclease

    Get PDF
    DNA polymerase was purified from soybean (Glycine max) chloroplasts that were actively replicating DNA. The main form (form I) of the enzyme was associated with a low level of 3\u27 to 5\u27 exonuclease activity throughout purification, although the ratio of exonuclease to polymerase activity decreased with each successive purification step. A second form (form II) of DNA polymerase, which elutes from DEAE-cellulose at a higher salt concentration than form I, was devoid of any exonuclease activity. To assess the potential function of the 3\u27 to 5\u27 exonuclease in proofreading, the fidelity of deoxynucleotide incorporation was measured for form I DNA polymerase throughout purification. Despite the steadily decreasing ratio of 3\u27 to 5\u27 exonuclease to polymerase activity, the extent of misincorporation by form I enzyme remained unchanged during the final purification steps, suggesting that the exonuclease did not contribute to the accuracy of DNA synthesis by this polymerase. Fidelity of form I DNA polymerase, when compared with that of form II, revealed a higher level of misincorporation for form I enzyme, a finding that is consistent with the exonuclease playing little or no role in exonucleolytic proofreading

    The Minimal Length and Large Extra Dimensions

    Full text link
    Planck scale physics represents a future challenge, located between particle physics and general relativity. The Planck scale marks a threshold beyond which the old description of spacetime breaks down and conceptually new phenomena must appear. Little is known about the fundamental theory valid at Planckian energies, except that it necessarily seems to imply the occurrence of a minimal length scale, providing a natural ultraviolet cutoff and a limit to the possible resolution of spacetime. Motivated by String Theory, the models of large extra dimensions lower the Planck scale to values soon accessible. These models predict a vast number of quantum gravity effects at the lowered Planck scale, among them the production of TeV-mass black holes and gravitons. Within the extra dimensional scenario, also the minimal length comes into the reach of experiment and sets a fundamental limit to short distance physics. We review the status of Planck scale physics in these effective models.Comment: 18 pages, 5 figures, brief review to appear in Mod. Phys. Let.

    Phenylalanine meta‐hydroxylase:A single residue mediates mechanistic control of aromatic amino acid hydroxylation

    Get PDF
    This work was supported by a project grant from the Biotechnology and Biological Sciences Research Council (BBSRC) U. K to R. J. M. G. (BB/I022910/2), and by the European Research Council under the European Union’s Seventh Framework Programme (FP7-3013/ERC grant agreement no 614779 GenoChemetics).The rare non-proteinogenic amino acid, meta- L-tyrosine is biosynthetically intriguing. Whilst the biogenesis of tyrosine from phenylalanine is well characterised, the mechanistic basis for meta-hydroxylation is unknown. Herein, we report the analysis of 3-hydroxylase (Phe3H) from Streptomyces coeruleorbidus. Insight from kinetic analyses, of both the wild-type enzyme and key mutants, of the biocatalytic conversion of synthetic isotopically labelled substrates and fluorinated substrate analogues advances understanding of the process by which meta-hydroxylation is mediated, revealing T202 to play an important role. In contrast to the established mechanism of tyrosine biogenesis, which proceeds via NIH shift, our data support direct, enzyme catalysed deprotonation following electrophilic aromatic substitution. We demonstrate that T202 is responsible for this shift in mechanism, with mutation to alanine resulting in a switch to the NIH shift mechanism and loss of regiospecificity. Furthermore, our kinetic parameters for Phe3H show efficient regiospecific generation of meta-L-tyrosine from phenylalanine and demonstrate the enzyme's ability to regiospecifically hydroxylate unnatural fluorinated substrates.Publisher PDFPeer reviewe

    Metabolic and thermogenic properties of the subcutaneous white adipose tissue of wild and laboratory rodents

    Get PDF
    For the first time biochemical analysis of inguinal adipose tissue of korean mouse (Apodemus peninsulae) and short-tailed vole (Microtus agrestis) have performed. Expression of uncoupling protein UCP1 in inguinal fat was combined with high metabolic and oxidative activity of this fat depot in wild rodents, in comparison with laboratory mice. Studies of the adipose tissues in animals from natural populations can be useful for the elucidating of the physiological norm of their functioning and for the development of regimes for the prevention and correction of metabolic disorders
    corecore