165 research outputs found
Tunneling mechanism of light transmission through metallic films
A mechanism of light transmission through metallic films is proposed,
assisted by tunnelling between resonating buried dielectric inclusions. This is
illustrated by arrays of Si spheres embedded in Ag. Strong transmission peaks
are observed near the Mie resonances of the spheres. The interaction among
various planes of spheres and interference effects between these resonances and
the surface plasmons of Ag lead to mixing and splitting of the resonances.
Transmission is proved to be limited only by absorption. For small spheres, the
effective dielectric constant can be tuned to values close to unity and a
method is proposed to turn the resulting materials invisible.Comment: 4 papges, 5 figure
Electronic response of aligned multishell carbon nanotubes
We report calculations of the effective electronic response of aligned
multishell carbon nanotubes. A local graphite-like dielectric tensor is
assigned to every point of the multishell tubules, and the effective transverse
dielectric function of the composite is computed by solving Maxwell's
equations. Calculations of both real and imaginary parts of the effective
dielectric function are presented, for various values of the filling fraction
and the ratio of the internal and external radii of hollow tubules. Our full
calculations indicate that the experimentally measured macroscopic dielectric
function of carbon nanotube materials is the result of a strong electromagnetic
coupling between the tubes, which cannot be accounted for with the use of
simplified effective medium theories. The presence of surface plasmons is
investigated, and both optical absorption cross sections and energy-loss
spectra of aligned tubules are calculated.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Effective electronic response of a system of metallic cylinders
The electronic response of a composite consisting of aligned metallic
cylinders in vacuum is investigated, on the basis of photonic band structure
calculations. The effective long-wavelength dielectric response function is
computed, as a function of the filling fraction. A spectral representation of
the effective response is considered, and the surface mode strengths and
positions are analyzed. The range of validity of a Maxwell-Garnett-like
approach is discussed, and the impact of our results on absorption spectra and
electron energy-loss phenomena is addressed.Comment: 15 pages, 6 figures, to appear in Phys. Rev.
Effective conductivity in association with model structure and spatial inhomogeneity of polymer/carbon black composites
The relationship between effective conductivity and cell structure of
polyethylene/carbon composites as well as between effective conductivity and
spatial distribution of carbon black are discussed. Following Yoshida's model
both structures can, in a way, be said to be intermediate between the well
known Maxwell-Garnett (MG) and Bruggeman (BR) limiting structures. Using TEM
photographs on composites with various carbon blacks we have observed that the
larger is Garncarek's inhomogeneity measure H of two-dimensional (2D)
representative distribution of the carbon black, the smaller is the effective
conductivity of the composite.Comment: 7 pages, 9 figure
Optical excitations in organic molecules, clusters and defects studied by first-principles Green's function methods
Spectroscopic and optical properties of nanosystems and point defects are
discussed within the framework of Green's function methods. We use an approach
based on evaluating the self-energy in the so-called GW approximation and
solving the Bethe-Salpeter equation in the space of single-particle
transitions. Plasmon-pole models or numerical energy integration, which have
been used in most of the previous GW calculations, are not used. Fourier
transforms of the dielectric function are also avoided. This approach is
applied to benzene, naphthalene, passivated silicon clusters (containing more
than one hundred atoms), and the F center in LiCl. In the latter, excitonic
effects and the defect line are identified in the energy-resolved
dielectric function. We also compare optical spectra obtained by solving the
Bethe-Salpeter equation and by using time-dependent density functional theory
in the local, adiabatic approximation. From this comparison, we conclude that
both methods give similar predictions for optical excitations in benzene and
naphthalene, but they differ in the spectra of small silicon clusters. As
cluster size increases, both methods predict very low cross section for
photoabsorption in the optical and near ultra-violet ranges. For the larger
clusters, the computed cross section shows a slow increase as function of
photon frequency. Ionization potentials and electron affinities of molecules
and clusters are also calculated.Comment: 9 figures, 5 tables, to appear in Phys. Rev. B, 200
Resonance-Induced Effects in Photonic Crystals
For the case of a simple face-centered-cubic photonic crystal of homogeneous
dielectric spheres, we examine to what extent single-sphere Mie resonance
frequencies are related to band gaps and whether the width of a gap can be
enlarged due to nearby resonances. Contrary to some suggestions, no spectacular
effects may be expected. When the dielectric constant of the spheres
is greater than the dielectric constant of the
background medium, then for any filling fraction there exists a critical
above which the lowest lying Mie resonance frequency falls inside
the lowest stop gap in the (111) crystal direction, close to its midgap
frequency. If , the correspondence between Mie
resonances and both the (111) stop gap and a full gap does not follow such a
regular pattern. If the Mie resonance frequency is close to a gap edge, one can
observe a resonance-induced widening of a relative gap width by .Comment: 14 pages, 3 figs., RevTex. For more info look at
http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm
The 10 micron amorphous silicate feature of fractal aggregates and compact particles with complex shapes
We model the 10 micron absorption spectra of nonspherical particles composed
of amorphous silicate. We consider two classes of particles, compact ones and
fractal aggregates composed of homogeneous spheres. For the compact particles
we consider Gaussian random spheres with various degrees of non-sphericity. For
the fractal aggregates we compute the absorption spectra for various fractal
dimensions. The 10 micron spectra are computed for ensembles of these particles
in random orientation using the well-known Discrete Dipole Approximation. We
compare our results to spectra obtained when using volume equivalent
homogeneous spheres and to those computed using a porous sphere approximation.
We conclude that, in general, nonspherical particles show a spectral signature
that is similar to that of homogeneous spheres with a smaller material volume.
This effect is overestimated when approximating the particles by porous spheres
with the same volume filling fraction. For aggregates with fractal dimensions
typically predicted for cosmic dust, we show that the spectral signature
characteristic of very small homogeneous spheres (with a volume equivalent
radius r_V<0.5 micron) can be detected even in very large particles. We
conclude that particle sizes are underestimated when using homogeneous spheres
to model the emission spectra of astronomical sources. In contrast, the
particle sizes are severely overestimated when using equivalent porous spheres
to fit observations of 10 micron silicate emission.Comment: Accepted for publication in A&
Mie-resonances, infrared emission and band gap of InN
Mie resonances due to scattering/absorption of light in InN containing
clusters of metallic In may have been erroneously interpreted as the infrared
band gap absorption in tens of papers. Here we show by direct thermally
detected optical absorption measurements that the true band gap of InN is
markedly wider than currently accepted 0.7 eV. Micro-cathodoluminescence
studies complemented by imaging of metallic In have shown that bright infrared
emission at 0.7-0.8 eV arises from In aggregates, and is likely associated with
surface states at the metal/InN interfaces.Comment: 4 pages, 5 figures, submitted to PR
Irradiation-induced Ag nanocluster nucleation in silicate glasses: analogy with photography
The synthesis of Ag nanoclusters in sodalime silicate glasses and silica was
studied by optical absorption (OA) and electron spin resonance (ESR)
experiments under both low (gamma-ray) and high (MeV ion) deposited energy
density irradiation conditions. Both types of irradiation create electrons and
holes whose density and thermal evolution - notably via their interaction with
defects - are shown to determine the clustering and growth rates of Ag
nanocrystals. We thus establish the influence of redox interactions of defects
and silver (poly)ions. The mechanisms are similar to the latent image formation
in photography: irradiation-induced photoelectrons are trapped within the glass
matrix, notably on dissolved noble metal ions and defects, which are thus
neutralized (reverse oxidation reactions are also shown to exist). Annealing
promotes metal atom diffusion, which in turn leads to cluster nuclei formation.
The cluster density depends not only on the irradiation fluence, but also - and
primarily - on the density of deposited energy and the redox properties of the
glass. Ion irradiation (i.e., large deposited energy density) is far more
effective in cluster formation, despite its lower neutralization efficiency
(from Ag+ to Ag0) as compared to gamma photon irradiation.Comment: 48 pages, 18 figures, revised version publ. in Phys. Rev. B, pdf fil
- …