733 research outputs found

    Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes

    Full text link
    Self-consistent transport simulation of ITER scenarios is a very important tool for the exploration of the operational space and for scenario optimisation. It also provides an assessment of the compatibility of developed scenarios (which include fast transient events) with machine constraints, in particular with the poloidal field (PF) coil system, heating and current drive (H&CD), fuelling and particle and energy exhaust systems. This paper discusses results of predictive modelling of all reference ITER scenarios and variants using two suite of linked transport and equilibrium codes. The first suite consisting of the 1.5D core/2D SOL code JINTRAC [1] and the free boundary equilibrium evolution code CREATE-NL [2,3], was mainly used to simulate the inductive D-T reference Scenario-2 with fusion gain Q=10 and its variants in H, D and He (including ITER scenarios with reduced current and toroidal field). The second suite of codes was used mainly for the modelling of hybrid and steady state ITER scenarios. It combines the 1.5D core transport code CRONOS [4] and the free boundary equilibrium evolution code DINA-CH [5].Comment: 23 pages, 18 figure

    Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz

    Get PDF
    Nonlinear gyrokinetic codes allow for detailed understanding of tokamak core turbulent transport. However, their computational demand precludes their use for predictive profile modeling. An alternative approach is required to bridge the gap between theoretical understanding and prediction of experiments. A quasilinear gyrokinetic model, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), is demonstrated to be rapid enough to ease systematic interface with experiments. The derivation and approximation of this approach are reviewed. The quasilinear approximation is proven valid over a wide range of core plasma parameters. Examples of profile prediction using QuaLiKiz coupled to the CRONOS integrated modeling code (Artaud et al 2010 Nucl. Fusion 50 043001) are presented. QuaLiKiz is being coupled to other integrated modeling platforms such as ETS and JETTO. QuaLiKiz quasilinear gyrokinetic turbulent heat, particle and angular momentum fluxes are available to all users. It allows for extensive stand-alone interpretative analysis and for first principle based integrated predictive modeling.</p

    A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear

    Get PDF
    New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation. © 2011 American Physical Societ

    Transient heat transport studies in JET conventional and advanced tokamak plasmas

    Get PDF
    Transient transport studies have long been recognised as a valuable complement to steady-state analysis for the understanding of transport mechanisms. Recently, transient transport data have proved to be a powerful tool to test the validity of physics-based transport models. In this paper, results from transient heat transport experiments in JET and their modelling will be presented. Edge cold pulses and modulation of ICRH (in Mode Conversion scheme) and NBI power have been used to provide detectable electron (Te) and ion (Ti) temperature perturbations. The experiments have been performed either in conventional plasma regimes or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas issues such as stiffness, influence of Te/Ti, non-locality have been addressed. In ITB plasmas, insight into the physics of ITBs and the ITB formation mechanisms has been gained. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations
    • …
    corecore