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I ntroduction

Hybrid scenarios in present machines are characterizechpsoved confinement compared
to the IPB98(y,2) empirical scaling law expectations. A n@mof possibilities explaining
this improvement have been proposed: reduction in deteterMHD, pedestal confinement
improvement, rotational shear turbulence suppressieneased turbulent thresholds due to g-
profile shaping, and stiffness reduction at low magneti@asfike 2, 3]. This work concentrates
on isolating the impact of increased s/q at outer radii (wleers the magnetic shear) on core
confinement inow-triangularity JET and ASDEX Upgrade (AUG) experiments. This is carried
out by predictive heat and particle transport modellinghgdhe integrated modelling code
CRONOS [4] coupled to the GLF23 turbulent transport modgl This work aims to validate
recent predictions of the ITER hybrid scenario also emplgff RONOS/GLF23, where a high
level of confinement and resultant fusion power sensitiwdtihe s/q profile was found [6].

Experimental discharges

For both machines, discharge pairs were analyzed disgjasrmilar pedestal confinement
yet significant differences in core confinement. A variationg-profile was experimentally
achieved in each pair, via the 'current-overshoot’ mettwdlie JET case (79626/79630, with
Br = 2T, Iy = 1.7MA and By (W) = 1.9/2.1, Bn(Waia) = 2.6/2.8) [7, 1], and by varying
the auxiliary heating timing in the AUG case (20993/20998hv8t = 2.4T, |, = 1IMA, and
Bn(Wh) = 1.6/1.9, Bn(Waia) = 1.9/2.3) [8]. Temporal evolution of the total plasma current,
heating powers and confinement factdisd = 1,/ PB98(y, 2)) can be seen in figure 1. The
s/q and rotation profiles used throughout this analysis @asden in figure 2. For the JET
pair, the interpretative g-profiles were used since thesteam effect of the current overshoot
may in certain cases be within the error bars of the MSE measemts. For the AUG pair,
the measured g-profiles were used since the interpretatpyefdes failed to reproduce the
measured relaxed g-profiles within experimental error,MitD activity may be redistributing
the current, clamping the g-profile to 1. The rotation prefiler the JET case are similar. For
the AUG case, the 20993 (lower confinement) case has a satiffdlatter rotation profile in
the low magnetic shear region x<0.4. Finally, all discharge devoid of NTMs in the temporal
periods studied, apart from AUG 20993, which has a 3/2 NTMewicinity of x = 0.5.

M odelling tools and techniques
The core of CRONOS is a 1.5D transport solver, whereby 1Dectidiffusion, particle and
energy equations are solved up to the separatrix, selfstemsiy with 2D magnetic equilibrium.

*See the Appendix of F. Romanelli et al., Proceedings of Brel 2AEA Fusion Energy Conference 2010, Daejeon, Korea
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observations.
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shear stabilization. Finally, additional analysis wagiedrout for the JET case with QualLiKiz,
where we assess the sensitivity of the instability lineaggholds to the g-profile, at= 0.65.
The experimentaR/Lry is 5.9+ 0.5 and 63+ 0.3 for 79630 and 79626 respectively, calculated
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predictsR/Lti = 7.32 for 79630, andR/Lt; = 8.08 for the same input apart from the substitution
of the 79626 g-profile and magnetic shear values. The expetahR/L, ;) values were
2.6/2.9, andR/Lte was kept at the observed ratioRgLT; throughout théR/Lt scan.
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Table 1: Core thermal energy following GLF23 predictionsI&BET and AUG hybrids. Units are [MJ].

EXP Heat transport Heat and particle EXP Heat transport Heat and particle

no ExB  with ExB | no ExB  with ExB noExB  withExB | no ExB  with ExB
79630 (q30)| 1.67 1.71 2.37 1.71 2.68 20995 (q95)| 0.33 0.36 0.48 0.34 0.47
79626 (q26) | 1.97 1.9 2.62 1.83 3.03 20995 (q93)| 0.22 0.3 0.43 0.29 0.41
Ratio 1.17 111 111 1.07 1.13 Ratio 15 1.2 1.12 1.17 1.15

Discussion and conclusions

A significant proportion of improved confinement in the JETda®JG hybrid scenarios
analysed here is due to improved g-profile shaping in the higgnetic shear region, at>
0.4, according to GLF23. A proportion of 60/30% of the observed improvement in core
thermal energy content within each JET/AUG pair respelstive predicted through g-profile
substitution alone (when averaging the ratios in the bottoeof table 1). In the heat transport
simulations, differences iR/Lt; are in the JET case only observed in the high shear region
(x>0.4) and are correlated with differences in s/g. In theGAtase, th&/Lr; differences occur
both in the low and high magnetic shear regions within x@&-TheR/Ly; difference in the
high shear region is correlated with a difference in s/q. E\ey, the difference in the low shear
region cannot be explained by s/q effects. Due to the difiegan rotational shear for x<0.4
between the two discharges in the AUG case, it may be pog$iateeduced stiffness in the
low shear region (not predicted by the stiff GLF23) may aetdor a further proportion of
core confinement difference, as also observed in JET [33.dls0 possible that the 3/2 NTM
observed in AUG 20093 is partially responsible for the apptioverprediction of the core
confinement by GLF23, even when not including ExB shear sg5pon, and can thus explain
a proportion of the core energy content difference betwieepair. Including rotation in GLF23
leads to core energy content overprediction for all disglsyralthough itis not possible to verify
whether this is due to the GLF23 ExB shearing model or to aimsit overprediction of the
turbulent thresholds. Nevertheless, confinement imprevemue to s/q is independent of the
rotation assumption. The degree of improvement in the I'EBATinear thresholds in the JET
pair is also well predicted by QuaLiKiz through the s/q effdhe overlap of the experimental
error bars orR/Lr; is however a caveat in such analysis.
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