669 research outputs found

    Two-dimensional echocardiographic spectrum of univentricular atrioventricular connection

    Get PDF
    The spectrum of anomalies in hearts having a univentricular atrioventricular (AV) connection was examined by two-dimensional echocardiography in 183 patients and the anatomic findings were compared with angiography. The mode of AV connection was found to be of three types: 1) double inletvia two A V valves; 2) singleinlet via one AV valve with absence of the other (left or right AV valve atresia); and 3) common inletvia a common AV valve. Identification of an accessory chamber by two-dimensional echocardiography was possible with 90% sensitivity, but it was limited compared with angiography in patients with severely hypoplastic anterior Chambers and pulmonary valve atresia. All patients with subaortic outlet foramen obstruction were detected. Great artery position and the presence of obstruction to pulmonary flow were correctly predicted in all but one patient. Two-dimensional echocardiography was superior to angiography for the detection of AV valve abnormalities which were present in 27% and included abnormal chordae, hypoplasia or dysplasia of either valve. Two-dimensional echocardiography should play an essential role in the complete preoperative assessment of patients with univentricular AV connection

    Quantum Monte Carlo calculations of A=9,10A=9,10 nuclei

    Get PDF
    We report on quantum Monte Carlo calculations of the ground and low-lying excited states of A=9,10A=9,10 nuclei using realistic Hamiltonians containing the Argonne v18v_{18} two-nucleon potential alone or with one of several three-nucleon potentials, including Urbana IX and three of the new Illinois models. The calculations begin with correlated many-body wave functions that have an α\alpha-like core and multiple p-shell nucleons, LSLS-coupled to the appropriate (Jπ;T)(J^{\pi};T) quantum numbers for the state of interest. After optimization, these variational trial functions are used as input to a Green's function Monte Carlo calculation of the energy, using a constrained path algorithm. We find that the Hamiltonians that include Illinois three-nucleon potentials reproduce ten states in 9^9Li, 9^9Be, 10^{10}Be, and 10^{10}B with an rms deviation as little as 900 keV. In particular, we obtain the correct 3+^+ ground state for 10^{10}B, whereas the Argonne v18v_{18} alone or with Urbana IX predicts a 1+^+ ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments, and one- and two-body density distributions.Comment: 28 pages, 12 tables, 7 figure

    Level structure of 99Nb

    Get PDF
    The β decay of 97Sr to 97Y has been investigated using ion-guide on-line mass separation and a 10 Ge-detector array to record γ−γ coincidences to a detection limit well below that of former studies. Similarities are found in the β-decay patterns of 99Zr and of its isotone 97Sr and also in the γ-ray decay rates and branchings of the corresponding levels in their respective daughters 99Nb and 97Y. This indicates a persisting influence of the d5/2 neutron shell closure for 99Nb. The level structure of 99Nb and the β-feeding pattern are discussed in the frame of the interacting boson-fermion plus broken pair model and the microscopic quasiparticle phonon model

    No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community – A Field Study

    Get PDF
    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community

    Increased Resistance of Bt Aspens to Phratora vitellinae (Coleoptera) Leads to Increased Plant Growth under Experimental Conditions

    Get PDF
    One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremula×Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance

    Research Methodologies and Business Discourse Teaching

    Get PDF
    This chapter will:; ; ; Define English for specific purposes and indicate the specific ways in which it has been influential on business discourse teaching;; ; ; Discuss the most relevant approaches to genre analysis that have been used in business discourse teaching;; ; ; Explore the most relevant approaches to critical discourse analysis and organizational rhetoric for business discourse teaching;; ; ; Identify the most relevant aspects of multimodal discourse analysis for business discourse teaching;; ; ; Provide a case study that illustrates the use of one approach to business discourse teaching, showing how practitioners can incorporate it into their classroom- or consultancy-based ideas

    Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions

    Get PDF
    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on. This study therefore points to the necessity of also considering soil feedback mechanisms in order to gain a comprehensive and holistic understanding of the impacts of current global change phenomena on the stability of essential ecosystem functions

    Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator

    Get PDF
    Selecting high-quality habitat and the optimal time to reproduce can increase individual fitness and is a strong evolutionary factor shaping animal populations. However, few studies have investigated the interplay between land cover heterogeneity, limitation in food resources, individual quality and spatial variation in fitness parameters. Here, we explore how individuals of different quality respond to possible mismatches between a cue for prey availability (land cover heterogeneity) and the actual fluctuating prey abundance.Peer reviewe

    Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter

    Full text link
    We present the performance of a full-length prototype of the ALICE Forward Calorimeter (FoCal). The detector is composed of a silicon-tungsten electromagnetic sampling calorimeter with longitudinal and transverse segmentation (FoCal-E) of about 20X0X_0 and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of about 5λint\lambda_{\rm int}. The data were taken between 2021 and 2023 at the CERN PS and SPS beam lines with hadron (electron) beams up to energies of 350 (300) GeV. Regarding FoCal-E, we report a comprehensive analysis of its response to minimum ionizing particles across all pad layers. The longitudinal shower profile of electromagnetic showers is measured with a layer-wise segmentation of 1X0X_0. As a projection to the performance of the final detector in electromagnetic showers, we demonstrate linearity in the full energy range, and show that the energy resolution fulfills the requirements for the physics needs. Additionally, the performance to separate two-showers events was studied by quantifying the transverse shower width. Regarding FoCal-H, we report a detailed analysis of the response to hadron beams between 60 and 350 GeV. The results are compared to simulations obtained with a Geant4 model of the test beam setup, which in particular for FoCal-E are in good agreement with the data. The energy resolution of FoCal-E was found to be lower than 3% at energies larger than 100 GeV. The response of FoCal-H to hadron beams was found to be linear, albeit with a significant intercept that is about factor 2 larger than in simulations. Its resolution, which is non-Gaussian and generally larger than in simulations, was quantified using the FWHM, and decreases from about 16% at 100 GeV to about 11% at 350 GeV. The discrepancy to simulations, which is particularly evident at low hadron energies, needs to be further investigated.Comment: 55 pages (without acronyms), 45 captioned figure
    corecore