323 research outputs found

    SCTA - A Rad-Hard BiCMOS Analogue Readout ASIC for the ATLAS Semiconductor Tracker

    Get PDF
    Two prototype chips for the analogue readout of silicon strip detectors in the ATLAS Semiconductor Tracker (SCT) have been designed and manufactured, in 32 channels and 128 channel versions, using the radiation hard BiCMOS DMILL process. The SCTA chip comprises three basic blocks: front-end amplifier, analogue pipeline and output multiplexer. The front-end circuit is a fast transresistance amplifier followed by an integrator, providing fast shaping with a peaking time of 25 ns, and an output buffer. The front end output values are sampled at 40 MHz rate and stored in a 112-cell deep analogue pipeline. The delay between the write pointer and trigger pointer is tunable between 2 ms and 2.5 ms. The chip has been tested successfully and subsequently irradiated up to 10 Mrad. Full functionality of all blocks of the chip has been achieved at a clock frequency of 40 MHz both before and after irradiation. Noise figures of ENC = 720 e- + 33 e-/pF before irradiation and 840 e- + 33 e-/pF after irradiation have been obtained

    The Micromegas detector of the CAST experiment

    Get PDF
    A low background Micromegas detector has been operating in the CAST experiment at CERN for the search of solar axions during the first phase of the experiment (2002-2004). The detector, made out of low radioactivity materials, operated efficiently and achieved a very low level of background rejection (5 x 10^-5 counts/keV/cm^2/s) without shielding.Comment: 13 pages, 12 figures and images, submitted to New Journal o

    A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4

    Full text link
    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in Namibia. It consists of four 12-m telescopes (CT1-4), which started operations in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is the only IACT system featuring telescopes of different sizes, which provides sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to ~100 TeV. Since the camera electronics of CT1-4 are much older than the one of CT5, an upgrade is being carried out; first deployment was in 2015, full operation is planned for 2016. The goals of this upgrade are threefold: reducing the dead time of the cameras, improving the overall performance of the array and reducing the system failure rate related to aging. Upon completion, the upgrade will assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA. In the design of the new components, several CTA concepts and technologies were used and are thus being evaluated in the field: The upgraded read-out electronics is based on the NECTAR readout chips; the new camera front- and back-end control subsystems are based on an FPGA and an embedded ARM computer; the communication between subsystems is based on standard Ethernet technologies. These hardware solutions offer good performance, robustness and flexibility. The design of the new cameras is reported here.Comment: Proceedings of the 34th International Cosmic Ray Conference, 30 July- 6 August, 2015, The Hague, The Netherland

    NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    Full text link
    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electronics, read-out, clock distribution, slow control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    The camera of the fifth H.E.S.S. telescope. Part I: System description

    Full text link
    In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.Comment: 16 pages, 13 figures, accepted for publication in NIM

    The silicon micro-strip detector plane for the LOFT/Wide Field Monitor

    Full text link
    The main objective of the Wide Field Monitor (WFM) on the LOFT mission is to provide unambiguous detection of the high-energy sources in a large field of view, in order to support science operations of the LOFT primary instrument, the LAD. The monitor will also provide by itself a large number of results on the timing and spectral behaviour of hundreds of galactic compact objects, Active Galactic Nuclei and Gamma-Ray Bursts. The WFM is based on the coded aperture concept where a position sensitive detector records the shadow of a mask projected by the celestial sources. The proposed WFM detector plane, based on Double Sided micro-Strip Silicon Detectors (DSSD), will allow proper 2-dimensional recording of the projected shadows. Indeed the positioning of the photon interaction in the detector with equivalent fine resolution in both directions insures the best imaging capability compatible with the allocated budgets for this telescope on LOFT. We will describe here the overall configuration of this 2D-WFM and the design and characteristics of the DSSD detector plane including its imaging and spectral performances. We will also present a number of simulated results discussing the advantages that this configuration offers to LOFT. A DSSD-based WFM will in particular reduce significantly the source confusion experienced by the WFM in crowded regions of the sky like the Galactic Center and will in general increase the observatory science capability of the mission.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-89, 201
    corecore