505 research outputs found

    Dynamical NNLO parton distributions

    Full text link
    Utilizing recent DIS measurements (\sigma_r, F_{2,3,L}) and data on hadronic dilepton production we determine at NNLO (3-loop) of QCD the dynamical parton distributions of the nucleon generated radiatively from valencelike positive input distributions at an optimally chosen low resolution scale (Q_0^2 < 1 GeV^2). These are compared with `standard' NNLO distributions generated from positive input distributions at some fixed and higher resolution scale (Q_0^2 > 1 GeV^2). Although the NNLO corrections imply in both approaches an improved value of \chi^2, typically \chi^2_{NNLO} \simeq 0.9 \chi^2_{NLO}, present DIS data are still not sufficiently accurate to distinguish between NLO results and the minute NNLO effects of a few percent, despite of the fact that the dynamical NNLO uncertainties are somewhat smaller than the NLO ones and both are, as expected, smaller than those of their `standard' counterparts. The dynamical predictions for F_L(x,Q^2) become perturbatively stable already at Q^2 = 2-3 GeV^2 where precision measurements could even delineate NNLO effects in the very small-x region. This is in contrast to the common `standard' approach but NNLO/NLO differences are here less distinguishable due to the much larger 1\sigma uncertainty bands. Within the dynamical approach we obtain \alpha_s(M_Z^2)=0.1124 \pm 0.0020, whereas the somewhat less constrained `standard' fit gives \alpha_s(M_Z^2)=0.1158 \pm 0.0035.Comment: 44 pages, 15 figures; minor changes, footnote adde

    Weakly nonlinear analysis of the viscoelastic instability in channel flow for finite and vanishing Reynolds numbers

    Get PDF
    The recently-discovered centre-mode instability of rectilinear viscoelastic shear flow (Garg et al. Phy. Rev. Lett. 121, 024502, 2018) has offered an explanation for the origin of elasto-inertial turbulence (EIT) which occurs at lower Weissenberg (WiWi) numbers. In support of this, we show using weakly nonlinear analysis that the subcriticality found in Page et al. (Phys. Rev. Lett. 125, 154501, 2020) is generic across the neutral curve with the instability only becoming supercritical at low Reynolds (ReRe) numbers and high WiWi. We demonstrate that the instability can be viewed as purely elastic in origin even for Re=O(103)Re=O(10^3), rather than `elasto-inertial', as the underlying shear does not energise the instability. It is also found that the introduction of a realistic maximum polymer extension length, LmaxL_{max}, in the FENE-P model moves the neutral curve closer to the inertialess Re=0Re=0 limit at a fixed ratio of solvent-to-solution viscosities, β\beta. In the dilute limit (β→1\beta \rightarrow 1) with Lmax=O(100)L_{max} =O(100), the linear instability can brought down to more physically-relevant Wi≳110Wi\gtrsim 110 at β=0.98\beta=0.98, compared with the threshold Wi=O(103)Wi=O(10^3) at β=0.994\beta=0.994 reported recently by Khalid et al. (arXiv: 2103.06794) for an Oldroyd-B fluid. Again the instability is subcritical implying that inertialess rectilinear viscoelastic shear flow is nonlinearly unstable - i.e. unstable to finite amplitude disturbances - for even lower WiWi

    Bottom quark electroproduction in variable flavor number schemes

    Full text link
    Two variable flavor number schemes are used to describe bottom quark production in deep inelastic electron-proton scattering. In these schemes the coefficient functions are derived from mass factorization of the heavy quark coefficient functions presented in a fixed flavor number scheme. Also one has to construct a parton density set with five light flavors (u,d,s,c,b) out of a set which only contains four light flavors (u,d,s,c). In order αs2\alpha_s^2 the two sets are discontinuous at μ=mb\mu=m_b which follows from mass factorization of the heavy quark coefficient functions when it is carried out in the MSˉ{\bar {\rm MS}}-scheme. Both variable flavor number schemes give almost identical predictions for the bottom structure functions F2,bF_{2,b} and FL,bF_{L,b}. Also they both agree well with the corresponding results based on fixed order four-flavor perturbation theory over a wide range in xx and Q2Q^2.Comment: Latex with seventeen PostScript figure

    Treatment of Heavy Quarks in Deeply Inelastic Scattering

    Full text link
    We investigate a simplified version of the ACOT prescription for calculating deeply inelastic scattering from Q^2 values near the squared mass M_H^2 of a heavy quark to Q^2 much larger than M_H^2.Comment: 14 pages, 5 figure

    Deep-inelastic production of heavy quarks

    Get PDF
    Deep-inelastic production of heavy quarks at HERA, especially charm, is an excellent signal to measure the gluon distribution in the proton at small xx values. By measuring various differential distributions of the heavy quarks this reaction permits additional more incisive QCD analyses due to the many scales present. Furthermore, the relatively small mass of the charm quark, compared to the typical momentum transfer QQ, allows one to study whether and when to treat this quark as a parton. This reaction therefore sheds light on some of the most fundamental aspects of perturbative QCD. We discuss the above issues and review the feasibility of their experimental investigation in the light of a large integrated luminosity.Comment: 10 pages, uses epsfig.sty, five ps figures included. To appear in the proceedings of the workshop Future Physics at HERA, eds. G. Ingelman, A. De Roeck and R. Klanner, DESY, Hamburg, 199

    Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chicken genome was sequenced because of its phylogenetic position as a non-mammalian vertebrate, its use as a biomedical model especially to study embryology and development, its role as a source of human disease organisms and its importance as the major source of animal derived food protein. However, genomic sequence data is, in itself, of limited value; generally it is not equivalent to understanding biological function. The benefit of having a genome sequence is that it provides a basis for functional genomics. However, the sequence data currently available is poorly structurally and functionally annotated and many genes do not have standard nomenclature assigned.</p> <p>Results</p> <p>We analysed eight chicken tissues and improved the chicken genome structural annotation by providing experimental support for the <it>in vivo </it>expression of 7,809 computationally predicted proteins, including 30 chicken proteins that were only electronically predicted or hypothetical translations in human. To improve functional annotation (based on Gene Ontology), we mapped these identified proteins to their human and mouse orthologs and used this orthology to transfer Gene Ontology (GO) functional annotations to the chicken proteins. The 8,213 orthology-based GO annotations that we produced represent an 8% increase in currently available chicken GO annotations. Orthologous chicken products were also assigned standardized nomenclature based on current chicken nomenclature guidelines.</p> <p>Conclusion</p> <p>We demonstrate the utility of high-throughput expression proteomics for rapid experimental structural annotation of a newly sequenced eukaryote genome. These experimentally-supported predicted proteins were further annotated by assigning the proteins with standardized nomenclature and functional annotation. This method is widely applicable to a diverse range of species. Moreover, information from one genome can be used to improve the annotation of other genomes and inform gene prediction algorithms.</p

    Comparison between the various descriptions for charm electroproduction and the HERA-data

    Get PDF
    We examine the charm component F_{2,c}(x,Q^2,m^2) of the proton structure function F_2(x,Q^2) in three different schemes and compare the results with the data in the x and Q^2 region explored by the HERA experiments. Studied are (1) the three flavour number scheme (TFNS) where the production mechanisms are given by the photon-gluon fusion process and the higher order reactions with three light-flavour parton densities as input (2) the four flavour number scheme (FFNS) where F_{2,c} is expressed in four light flavour densities including one for the charm quark and (3) a variable-flavour number scheme (VFNS) which interpolates between the latter two. Both the VFNS and the TFNS give good descriptions of the experimental data. However one cannot use the FFNS for the description of the data at small Q^2

    Charm electroproduction viewed in the variable-flavour number scheme versus fixed-order perturbation theory

    Full text link
    Starting from fixed-order perturbation theory (FOPT) we derive expressions for the heavy-flavour components of the deep-inelastic structure functions FL and F2 in the variable-flavour number scheme (VFNS). These expressions are valid in all orders of perturbation theory. This derivation establishes a relation between the parton densities parametrized at N and N light flavours. The consequences for the existing parametrizations of the parton densities are discussed. Further we show that in charm electroproduction the exact and asymptotic expressions for the heavy-quark coefficient functions yield identical results for F2 when Q^2>20 (GeV/c)^2. We also study the differences between the FOPT and the VFNS descriptions for F2. It turns out that the charm structure function in the VFNS is larger than the one obtained in FOPT over the whole Q^2-range. Furthermore inspection of the perturbation series reveals that the higher order corrections in the VFNS are smaller than those present in FOPT for Q^2>10 (GeV/c)^2. Therefore the VFNS gives a better prediction for the charm structure function at large Q^2-values than FOPT.Comment: 48 pages, Latex and 13 figures, Postscrip
    • …
    corecore