Utilizing recent DIS measurements (\sigma_r, F_{2,3,L}) and data on hadronic
dilepton production we determine at NNLO (3-loop) of QCD the dynamical parton
distributions of the nucleon generated radiatively from valencelike positive
input distributions at an optimally chosen low resolution scale (Q_0^2 < 1
GeV^2). These are compared with `standard' NNLO distributions generated from
positive input distributions at some fixed and higher resolution scale (Q_0^2 >
1 GeV^2). Although the NNLO corrections imply in both approaches an improved
value of \chi^2, typically \chi^2_{NNLO} \simeq 0.9 \chi^2_{NLO}, present DIS
data are still not sufficiently accurate to distinguish between NLO results and
the minute NNLO effects of a few percent, despite of the fact that the
dynamical NNLO uncertainties are somewhat smaller than the NLO ones and both
are, as expected, smaller than those of their `standard' counterparts. The
dynamical predictions for F_L(x,Q^2) become perturbatively stable already at
Q^2 = 2-3 GeV^2 where precision measurements could even delineate NNLO effects
in the very small-x region. This is in contrast to the common `standard'
approach but NNLO/NLO differences are here less distinguishable due to the much
larger 1\sigma uncertainty bands. Within the dynamical approach we obtain
\alpha_s(M_Z^2)=0.1124 \pm 0.0020, whereas the somewhat less constrained
`standard' fit gives \alpha_s(M_Z^2)=0.1158 \pm 0.0035.Comment: 44 pages, 15 figures; minor changes, footnote adde