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The recently-discovered centre-mode instability of rectilinear viscoelastic shear flow (Garg et al.
Phy. Rev. Lett. 121, 024502, 2018) has offered an explanation for the origin of elasto-inertial
turbulence (EIT) which occurs at lower Weissenberg (𝑊𝑖) numbers. In support of this, we show
using weakly nonlinear analysis that the subcriticality found in Page et al. (Phys. Rev. Lett. 125,
154501, 2020) is generic across the neutral curve with the instability only becoming supercritical
at low Reynolds (𝑅𝑒) numbers and high 𝑊𝑖. We demonstrate that the instability can be viewed
as purely elastic in origin even for 𝑅𝑒 = 𝑂 (103), rather than ‘elasto-inertial’, as the underlying
shear does not feed the kinetic energy of the instability. It is also found that the introduction of
a realistic maximum polymer extension length, 𝐿𝑚𝑎𝑥 , in the FENE-P model moves the neutral
curve closer to the inertialess 𝑅𝑒 = 0 limit at a fixed ratio of solvent-to-solution viscosities, 𝛽. In
the dilute limit (𝛽 → 1) with 𝐿𝑚𝑎𝑥 = 𝑂 (100), the linear instability can brought down to more
physically-relevant𝑊𝑖 ≳ 110 at 𝛽 = 0.98, comparedwith the threshold𝑊𝑖 = 𝑂 (103) at 𝛽 = 0.994
reported recently by Khalid et al. (Phys. Rev. Lett. 127, 134502, 2021) for an Oldroyd-B fluid.
Again the instability is subcritical implying that inertialess rectilinear viscoelastic shear flow is
nonlinearly unstable - i.e. unstable to finite amplitude disturbances - for even lower𝑊𝑖.
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1. Introduction
Viscoelastic flows have been of interest ever since the observation 70 years ago that a substantial

reduction in viscous drag on a wall of a pipe carrying turbulent flow is possible after adding
only a few parts per millon of long-chain polymers (Toms 1948). Just as curiously, adding further
polymer quickly saturates this effect when the so-called ‘maximumdrag reduction’ regime (MDR)
is entered (Virk 1970), with skin friction reduced by ∼80% relative to its Newtonian value.
Efforts to explain this phenomenon have naturally focussed on understanding how low polymer
concentrations moderate Newtonian turbulence (NT) (e.g. Lumley 1969; Tabor & de Gennes
1986; Procaccia et al. 2008; White & Mungal 2008). However, the discovery of a new form of
viscoelastic turbulence - ‘elasto-inertial’ turbulence (EIT) - in 2013 (Samanta et al. 2013; Dubief
et al. 2013; Sid et al. 2018) which exists at large Reynolds number 𝑅𝑒 = 𝑂 (103) andWeissenberg
number𝑊𝑖 = 𝑂 (10) has provided a competing and even less well understood possibility. Provided
𝑊𝑖 is large enough, EIT can exist at much lower 𝑅𝑒 than NT explaining what has been labelled
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in the past as ‘early turbulence’ (Jones & Maddock 1966; Goldstein et al. 1969; Hansen & Little
1974; Draad et al. 1998; Samanta et al. 2013; Choueiri et al. 2018; Chandra et al. 2018). At higher
but fixed 𝑅𝑒, it is also possible, as the polymer concentration is steadily increased from zero,
to relaminarize NT before triggering EIT (Choueiri et al. 2018; Chandra et al. 2018). In DNS,
increasing 𝑊𝑖 from a state of EIT quenches the flow down to a simple travelling wave solution
and presumably laminar flow if𝑊𝑖 is large enough (e.g. see figure 2 in Page et al. 2020; Dubief
et al. 2020). At even higher 𝑅𝑒, it is currently unclear whether the two types of turbulence merge
or co-exist, and how MDR fits into the situation remains an outstanding issue (e.g. Xi & Graham
2010, 2012; Graham 2014; Samanta et al. 2013; Choueiri et al. 2018, 2021; Lopez et al. 2019).
Further questions also exist as to how EIT relates to another form of viscoelastic turbulence

- ‘elastic’ turbulence (ET) - that was discovered a decade earlier (Groisman & Steinberg 2000).
This is generated by the well-known ‘elastic’ linear instability of curved streamlines (Larson
et al. 1990; Shaqfeh 1996) and exists at vanishingly small Reynolds numbers so inertial effects
are unambiguously irrelevant for sustaining the turbulence. This elastic instability is also possible
in planar geometries, but requires finite-amplitude disturbances to generate streamline curvature
(Meulenbroek et al. 2004; Morozov & Saarloos 2007). Intriguingly, substantial linear transient
growth can occur in the purely-elastic limit via a polymeric ‘lift-up’ effect, with streaks in the
streamwise velocity (Jovanović & Kumar 2010, 2011), but is very different in appearance to these
finite-amplitude solutions. In contrast to the inertialess ET, a fairly large 𝑅𝑒 is required for EIT,
indicating that inertia is important here. This suggests that EIT and ET are distinct phenomena
(e.g. see figure 30 Chaudhary et al. 2021) yet they could still be two extremes of the same
whole (Samanta et al. 2013; Qin et al. 2019; Choueiri et al. 2021; Steinberg 2021). Finally, the
underlying mechanism which sustains EIT has yet to be clarified (Dubief et al. 2013; Terrapon
et al. 2015; Sid et al. 2018; Shekar et al. 2018, 2020; Page et al. 2020; Chaudhary et al. 2021).
Amajor step forward in explaining the origin of EITwasmade recently when a linear instability

was found at relatively high 𝑊𝑖 ≳ 20 which could reach down to a threshold 𝑅𝑒𝑐 ≈ 63 in pipe
flow (Garg et al. 2018; Chaudhary et al. 2021). This finding overturned a long held view that no
new linear instability would appear by adding polymers to a Newtonian rectilinear shear flow: see
Chaudhary et al. (2019, 2021) for an extensive historical discussion of this point and the recent
review by Sanchez et al. (2022). This instability was also confirmed in channel flow (Khalid
et al. 2021a) using an Oldroyd-B fluid but was found absent in an upper-convected Maxwell
(UCM) fluid (Chaudhary et al. 2019). The instability is a centre-mode instability which has a
phase speed close to the maximum base-flow speed and appeared to need inertia (finite 𝑅𝑒) to
exist: in a channel with an experimentally-relevant 𝛽 (the ratio of solvent-to-solution viscosities)
of 0.9 and elasticity number of 0.1, the threshold 𝑅𝑒𝑐 ≈ 200 (Khalid et al. 2021a) consistent
with the finite threshold of 𝑅𝑒𝑐 ≈ 63 found earlier in pipe flow (Garg et al. 2018; Chaudhary
et al. 2021). However, in the dilute limit (𝛽 → 1) and in contrast with pipe flow, Khalid et al.
(2021a) alsofound that 𝑅𝑒𝑐 could be pushed down to ≈ 5 by the time 𝛽 reached 0.99, albeit at
very large 𝑊𝑖 (=O(103)). Further computations (Khalid et al. 2021b) have confirmed that the
elastic limit of 𝑅𝑒 = 0 can indeed be reached at 𝛽 = 0.9905 and 𝑊𝑖 ≈ 2500. Looking beyond
the extreme value of 𝑊𝑖 –which is apparently achievable experimentally (Vashney & Steinberg
2018; Schnapp & Steinberg 2021)–this result has established a fascinating connection between
an instability which appears to need inertia, elasticity and solvent viscosity (finite (1 − 𝛽)) and a
purely elastic instability when (1 − 𝛽) is small enough (Khalid et al. (2021b) refer to this as an
‘ultra dilute’ polymer solution).
However, EIT appears at lower 𝑊𝑖 (figure 2 in Page et al. 2020) and sometimes lower 𝑅𝑒 at

a given𝑊𝑖 (see figure 1b in Choueiri et al. 2021) than the centre-mode instability. For example,
in channel flow at 𝑅𝑒 = 1000 and 𝛽 = 0.9 in a FENE-P fluid with 𝐿𝑚𝑎𝑥 = 500, EIT occurs
around𝑊𝑖 = 20, whereas the centre-mode instability threshold is𝑊𝑖 ≈ 70 (figure 2 (left) in Page
et al. 2020). This means that if EIT is dynamically connected to this instability, the hierarchy
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of nonlinear solutions which emerge from the linear instability must be substantially subcritical,
reaching to 𝑊𝑖 far below those of the neutral curve (and similarly for 𝑅𝑒 for high enough 𝑊𝑖).
This was confirmed in one specific case on the neutral curve - (𝑅𝑒,𝑊𝑖, 𝛽) = (60, 26.9, 0.9) –
where the bifurcation was shown to be strongly subcritical with the branch of travelling waves
solutions reaching down to𝑊𝑖 = 8.77 (Page et al. 2020). Moreover, the travelling wave solutions
adopt a distinctive ‘arrowhead’ form in the polymer stress when 𝑊𝑖 is small enough which can
be recognised as an intermittently-observed coherent structure in the DNS of EIT (Dubief et al.
2020).
The primary purpose of this paper is to back up this initial finding of subcriticality by carrying

out a systematic survey of whether the centre mode bifurcation is sub- or supercritical across the
entire neutral curve for a typical value of 𝛽 of 0.9 using weakly nonlinear analysis (Stuart 1960;
Watson 1960). In doing so, we also take the opportunity to confirm that the instability is present
for a FENE-P fluid with reasonable maximum polymer extension 𝐿𝑚𝑎𝑥 (see 2.1d) and, spurred
on by the recent results of Khalid et al. (2021b), explore how the presence of finite 𝐿𝑚𝑎𝑥 affects
the dilute limit (𝛽 → 1) where 𝑅𝑒 = 0 can be reached. We also examine the energetic source
term, or terms, for the instability uncovering a consistent picture even on the part of the neutral
curve reaching to high 𝑅𝑒.
The plan of the paper is as follows. In §2, the FENE-P model is introduced and the presence or

not of polymer diffusion as indicated by a Schmidt number 𝑆𝑐 is discussed. The weakly nonlinear
expansions are also introduced. While this is now an established method in the fluid dynamicists’
toolbox, for viscoelastic models where the (coarse-grained) local polymer configuration is rep-
resented by a positive definite conformation tensor C, there are some technicalities which need
some attention. We follow the framework recently suggested by Hameduddin et al. (2018, 2019)
to treat this issue which requires a bit more formal development than is normal. Having set this
up, §3 then presents the weakly nonlinear analysis which proceeds as usual albeit with a proxy
for C being expanded instead of C itself. Results in §4 are arranged as follows: §4.1 and §4.2
consider (𝛽, 𝐿𝑚𝑎𝑥) = (0.9, 500) with 𝑆𝑐 → ∞; §4.3 considers (𝛽, 𝐿𝑚𝑎𝑥 , 𝑆𝑐) = (0.9, 100, 106);
§4.4 performs an energy analysis over the neutral curves of §4.1 and 4.3; and finally §4.5 exam-
ines the 𝑅𝑒 = 0 situation varying 𝛽 over the approximate range of [0.97, 0.99] for 𝑊𝑖 ⩽ 200
and 𝐿𝑚𝑎𝑥 ∈ [40, 100] (𝑆𝑐 → ∞). More moderate 𝛽 are considered in Appendix C, specifically
(𝛽, 𝐿𝑚𝑎𝑥) = (0.74, {250, 500,∞}) and (0.56, {500,∞}) (all at 𝑆𝑐 → ∞). Lastly, §5 presents a
discussion of the paper’s results.
While this work was going through review, we became aware of the complementary work of

Wan et al. (2021) on the weakly nonlinear analysis of axisymmetric pipe flow. Their findings are
consistent with those reported here for channel flow.

2. Formulation
We consider pressure-driven viscoelastic flow between two parallel, stationary, rigid plates

separated by a distance 2ℎ and assume that the flow is governed by the FENE-P model

𝜕𝑡u + (u · ∇) u + ∇𝑝 =
𝛽

𝑅𝑒
Δu + (1 − 𝛽)

𝑅𝑒
∇ · T(C), (2.1a)

∇ · u = 0, (2.1b)

𝜕𝑡C + (u · ∇) C + T(C) = C · ∇u + (∇u)𝑇 · C + 1
𝑅𝑒𝑆𝑐

ΔC. (2.1c)

The constitutive relation for the polymer stress, T, is given by the Peterlin function

T(C) :=
1
𝑊𝑖

(
𝑓 (tr C)C − I

)
, where 𝑓 (𝑥) :=

(
1 − 𝑥 − 3

𝐿2
𝑚𝑎𝑥

)−1
(2.1d)
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with 𝐿𝑚𝑎𝑥 denoting the maximum extensibility of polymer chains. Here C ∈ Pos(3) (the set of
positive definite 3 × 3 matrices) is the polymer conformation tensor and 𝛽 ∈ [0, 1] denotes the
viscosity ratio, 𝛽 := 𝜈𝑠/𝜈, where 𝜈𝑠 and 𝜈𝑝 = 𝜈 − 𝜈𝑠 are the solvent and polymer contributions to
the total kinematic viscosity 𝜈. The equations are non-dimensionalised by ℎ and the bulk speed

𝑈𝑏 :=
1

2ℎ

∫ ℎ

−ℎ
𝑢𝑥 𝑑𝑦 (2.2)

which, through adjusting the pressure gradient appropriately, is kept constant so that the Reynolds
and Weissenberg numbers are defined as

𝑅𝑒 :=
ℎ𝑈𝑏

𝜈
, 𝑊𝑖 :=

𝜏𝑈𝑏

ℎ
(2.3)

where 𝜏 is the polymer relaxation time. Polymer diffusion - the last term in Eq. (2.1c) - is often
omitted as the typical magnitude of the Schmidt number, 𝑆𝑐 ∼ 𝑂 (106). Here it is retained
throughout the nonlinear analysis to: i) allow a more realistic comparison with results from direct
numerical simulations (DNS), where a relatively low Schmidt number (𝑆𝑐 ∼ 𝑂 (103)) is required
for the solver to converge (Page et al. 2020), and ii) assess its importance more generally. Non-
slip boundary conditions are imposed on the velocity field. If an infinite Schmidt number 𝑆𝑐 is
considered, no boundary conditions for the conformation tensorC are needed. In the case of finite
Schmidt numbers, we apply 𝑆𝑐 → ∞ at the boundary to retain this situation (Sid et al. 2018).
In the course of this work, we compute neutral curves for the recently-discovered centre mode

instability (Garg et al. 2018) in a channel following the recent work byKhalid et al. (2021a,b). The
marginally-stable eigenfunctions form the basis of a weakly nonlinear expansion in the amplitude
of the bifurcating solution. The key objective here is to ascertain whether the bifurcation is
supercritical or subcritical. Subcriticality would indicate that bifurcated solutions exist beyond
the parameter domain of linear instability, thereby implying that the flow is nonlinearly unstable
- i.e. unstable to sufficiently large amplitude disturbances - in new, potentially more interesting
parameter regimes. A case in point is the very recent discovery that the centre mode instability
still operates at 𝑅𝑒 = 0 albeit at very high 𝑊𝑖 = 𝑂 (1000) and ultra-dilute polymer solutions of
1 − 𝛽 = 𝑂 (10−3) (Khalid et al. 2021b). While these extremes are on the margins of physical
relevance, a strongly-subcritical instability could still see its consequences in the form of finite
amplitude solutions at vastly different𝑊𝑖 and 𝛽.

2.1. Base state
The base state to (2.1a)-(2.1c) is the steady unidirectional solution and satisfies the following
reduced set of equations:

𝜕𝑥 𝑝 =
𝛽

𝑅𝑒
𝜕𝑦𝑦𝑢𝑥 +

(1 − 𝛽)
𝑅𝑒𝑊𝑖

[
( 𝑓 (tr C))2

𝐿2
𝑚𝑎𝑥

tr(𝜕𝑦𝐶)𝐶𝑥𝑦 + 𝑓 (tr C)𝜕𝑦𝐶𝑥𝑦

]
, (2.4a)

1
𝑊𝑖

( 𝑓 (tr C)𝐶𝑥𝑥 − 1) = 2𝐶𝑥𝑦𝜕𝑦𝑢𝑥 +
1

𝑅𝑒𝑆𝑐
𝜕𝑦𝑦𝐶𝑥𝑥 , (2.4b)

1
𝑊𝑖

(
𝑓 (tr C)𝐶𝑦𝑦 − 1

)
=

1
𝑅𝑒𝑆𝑐

𝜕𝑦𝑦𝐶𝑦𝑦 , (2.4c)

1
𝑊𝑖

( 𝑓 (tr C)𝐶𝑧𝑧 − 1) = 1
𝑅𝑒𝑆𝑐

𝜕𝑦𝑦𝐶𝑧𝑧 , (2.4d)

1
𝑊𝑖

(
𝑓 (tr C)𝐶𝑥𝑦

)
= 𝐶𝑦𝑦𝜕𝑦𝑢𝑥 +

1
𝑅𝑒𝑆𝑐

𝜕𝑦𝑦𝐶𝑥𝑦 . (2.4e)

where u = 𝑢𝑥 x̂ + 𝑢𝑦 ŷ. Since the 𝑅𝑒 is based on the bulk speed, the applied pressure gradient is
adjusted until the bulk speed is unity (after non-dimensionalisation) (e.g. Samanta et al. 2013;
Dubief et al. 2013; Sid et al. 2018;Dubief et al. 2020). Figure 1 displays the base state (u𝑏, 𝑝𝑏,C𝑏)
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Figure 1. Laminar base state at 𝛽 = 0.9, 𝐿𝑚𝑎𝑥 = 500, 𝑆𝑐 → ∞, 𝑊𝑖 = 60, 𝑅𝑒 = 68. The components
of the base flow conformation tensor, C𝑏 , are normalized by their value at the bottom wall (𝑦 = −1).
(𝐶𝑏,𝑥𝑥

��
𝑦=−1 = 39235, 𝐶𝑏,𝑦𝑦

��
𝑦=−1 = 𝐶𝑏,𝑧𝑧

��
𝑦=−1 = 0.84, 𝐶𝑏,𝑥𝑦

��
𝑦=−1 = 129.)

for a particular parameter combination. It is worth remarking that𝑈𝑚𝑎𝑥 is very nearly 1.5 in units
of 𝑈𝑏 for 𝛽 close to 1 (e.g. 𝛽 = 0.9 which is used in the main part of the paper) and then a 𝑊𝑖

based upon the bulk velocity (as here) is very close to two thirds of a Weissenberg number based
on 𝑈𝑚𝑎𝑥 (Garg et al. 2018; Chaudhary et al. 2021; Khalid et al. 2021a,b). In Appendix C we
consider 𝛽 = 0.56 and 𝛽 = 0.74 where this simple relationship no longer holds.

2.2. Perturbative Expansions
The weakly nonlinear expansions for the velocity and pressure components are straightforwardly
written in the form

u = u𝑏 +
𝑁∑︁
𝑘=1

𝜀𝑘u(𝑘) , 𝑝 = 𝑝𝑏 +
𝑁∑︁
𝑘=1

𝜀𝑘 𝑝 (𝑘) . (2.5)

However, the conformation tensor, C, calls for a more careful treatment, since the set of positive
definite 3 × 3 matrices, Pos(3), cannot be a vector space. Instead, it may be endowed with the
structure of a complete Riemannian manifold. Perturbations of order 𝜀𝑘 still make sense in this
setting, but one has to interpret the 𝜀𝑘 distance in terms of the metric arising from the Riemannian
structure of the manifold Pos(3). In developing perturbations for the conformation tensor, C, we
follow the framework of Hameduddin et al. (2018, 2019) who focussed on precisely this issue.
We may view C as the left Cauchy-Green tensor associated to the polymer deformation, i.e.,

C = FF𝑇 ,

where F denotes the deformation gradient with thermal equilibrium taken as the reference con-
figuration. A further decomposition of F into two successive deformations, which may be written
as

F = F𝑏L (2.6)
separates the deformation corresponding to the perturbation, L, from the deformation associated
with the base state, which may be expressed as†

F𝑏 = C
1
2
𝑏
.

The fluctuating deformation gradient, L, has an associated left Cauchy-Green tensor G = LL𝑇 .
Combining these observations, we have that

C = F𝑏GF𝑇
𝑏 . (2.7)

† This representation is not unique, any F𝑏 = C
1
2
𝑏

R works with R ∈ SO(3). The choice R = I is natural
in the sense that it allows for a geodesic between C𝑏 and C to be expressed solely in terms of F𝑏 and G.
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The tensor G is necessarily positive definite since C is, and by nature it acts as the conformation
tensor representing the fluctuations of C around C𝑏.
The evolution equation (2.1c) for the conformation tensor can be rewritten in terms of G as

follows:
𝜕𝑡G + (u · ∇)G = 2sym (Gℎ(u)) − F−1

𝑏 TF−𝑇
𝑏 , (2.8)

with

ℎ(u) = F𝑇
𝑏 · ∇u · F−𝑇

𝑏 −
(
F−1
𝑏 (u · ∇)F𝑏

)𝑇
.

As described by Hameduddin et al. (2019), an additive expansion of the form (2.5) no longer
makes sense on Pos(3), since there is no a priori guarantee that the resulting C remains positive
definite. Instead, Hameduddin et al. (2019) proposed a multiplicative expansion based on the
decomposition (2.6) that consists of a series of successively smaller deformations, which may be
written in the form

L𝑤𝑛𝑙 = L𝜀
(1)L

𝜀2

(2) · · ·L
𝜀𝑁

(𝑁 ) .

The matrix L𝑤𝑛𝑙 may differ from L given in (2.6) by a rotation only.
Under the additional assumption that the L𝜀𝑘

(𝑘) are rotation free with det(L(𝑘) ) > 0, each
L𝑘 is positive definite. The conformation tensors associated to these deformations are then

given by G𝜀𝑘

(𝑘) = L𝜀𝑘

(𝑘)

(
L𝜀𝑘

(𝑘)

)𝑇
. To make sense of 𝜀-magnitude perturbations, we make use

of the Riemannian manifold structure of Pos(3). In particular, the G𝜀𝑘

(𝑘) may be thought of
as length ∼ |𝜀 |𝑘 geodesics emanating from I on the manifold Pos(3). That is, we may take
G(𝑘) ∈ 𝑇IPos(3) = Sym(3) such that

G𝜀𝑘

(𝑘) = exp
(
𝜀𝑘G(𝑘)

)
,

with
𝑑 (I,G𝜀𝑘

(𝑘) ) = |𝜀 |𝑘 ∥G(𝑘) ∥𝐹 ,
where 𝑑 is themetric induced by the Riemannian structure of Pos(3) (𝑇IPos(3) is the tangent space
at the point I of Pos(3) ). Note that this is analogous to weakly nonlinear expansions on vector
spaces equipped with the Frobenius norm, only now we measure the corresponding distance on
Pos(3) with the Riemannian metric.
This approach eventually leads to an expansion of the form

G = exp
(
𝜀
G(1)

2

)
· · · exp

(
𝜀𝑁−1G(𝑁−1)

2

)
exp

(
𝜀𝑁G(𝑁 )

)
exp

(
𝜀𝑁−1G(𝑁−1)

2

)
· · · exp

(
𝜀
G(1)

2

)
= I + 𝜀G(1) + 𝜀2

(
G(2) +

G2
(1)
2

)
+ 𝜀3

(
G(3) + sym

(
G(1)G(2)

)
+
G3

(3)
6

)
+ . . . (2.9)

This representation of the weakly nonlinear terms is equivalent to a standard expansion for C of
the form (2.5), as the operationG( 𝑗) ↦→ F𝑏G( 𝑗)F𝑇

𝑏
serves as a bijection between the two solution

sets, as long as F𝑏 ∈ 𝐶0 ( [−1, 1]; GL(3)) i.e. F𝑏 is a 3 × 3 invertible matrix with continuous
functions in 𝑦 ∈ [−1, 1] as entries.
While the new formulation does not in practice modify the mechanics of constructing a weakly

nonlinear expansion, the mathematical consistency of the approach yields a variety of tools for
measuring perturbations on Pos(3) in the only suitable manner, according to the corresponding
metric. One such measure, which we shall use frequently in the sections to follow, is the geodesic
distance from the mean, given by

𝑑 (C𝑏,C) = 𝑑 (I,G) =
√︁

trG2. (2.10)
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3. Weakly nonlinear analysis
Let 𝝋 = (𝑢𝑥 , 𝑢𝑦 , 𝑝, 𝐺𝑥𝑥 , 𝐺𝑦𝑦 , 𝐺𝑧𝑧 , 𝐺𝑥𝑦) denote the vector composed of all state variables.

This is further decomposed into two parts: a contribution from the base state and a fluctuating
part as follows

𝝋 = 𝝋𝑏 + 𝝋̂,

where the interest is now in solving the governing system (2.1) for the perturbations 𝝋̂. The
Peterlin function (2.1d) for T is first expanded around the base conformation state, C𝑏 as follows

T(C) = T(C𝑏) + 𝐷T(C𝑏) [Ĉ] + 1
2
𝐷2T(C𝑏) [Ĉ, Ĉ] + 1

6
𝐷3T(C𝑏) [Ĉ, Ĉ, Ĉ] + . . . . (3.1)

For the analysis which follows, it suffices to perform the above expansion (3.1) up to third order
and to compress the notation, we shall only consider𝑊𝑖 and 𝑅𝑒 as varying parameters. The others,
𝛽 and 𝑆𝑐, are assumed fixed but similar expansions for them may be obtained in an analogous
fashion. After a subtraction of the laminar solution, equation (2.1) can be written in an operator
form locally around the base state (u𝑏,C𝑏) as

L (𝑅𝑒,𝑊𝑖) [𝝋̂] + B (𝑅𝑒,𝑊𝑖) [𝝋̂, 𝝋̂] + T (𝑅𝑒,𝑊𝑖) [𝝋̂, 𝝋̂, 𝝋̂] = 0, (3.2)

where L (𝑅𝑒,𝑊𝑖) is linear, B (𝑅𝑒,𝑊𝑖) is bilinear and T (𝑅𝑒,𝑊𝑖) is symmetric trilinear. These
are given explicitly as

L (𝑅𝑒,𝑊𝑖) [𝝋̂] =

©­­­­­­­­­­«

𝜕𝑡 û + (u𝑏 · ∇)û + (û · ∇)u𝑏 + ∇𝑝 − 𝛽

𝑅𝑒
Δû − 1−𝛽

𝑅𝑒
∇ ·

(
𝐷T(C𝑏)

[
F𝑏ĜF𝑇

𝑏

] )
∇ · û

𝜕𝑡Ĝ + (u𝑏 · ∇)Ĝ − 2sym
(
ℎ (û) + Ĝℎ(u𝑏)

)
+ F−1

𝑏
𝐷T(C𝑏)

[
F𝑏ĜF𝑇

𝑏

]
F−𝑇
𝑏

− 1
𝑅𝑒𝑆𝑐

F−1
𝑏
Δ

(
F𝑏ĜF𝑇

𝑏

)
F−𝑇
𝑏

ª®®®®®®®®®®¬
,

B (𝑅𝑒,𝑊𝑖) [𝝋̂1, 𝝋̂2] =

©­­­­­­­«

(û1 · ∇)û2 − 1−𝛽
2𝑅𝑒∇ ·

(
𝐷2T(C𝑏)

[
F𝑏Ĝ1F𝑇

𝑏
,F𝑏Ĝ2F𝑇

𝑏

] )
0

(û1 · ∇)Ĝ2 − 2sym
(
Ĝ1ℎ(û2)

)
+ 1

2 F−1
𝑏
𝐷2T(C𝑏)

[
F𝑏Ĝ1F𝑇

𝑏
,F𝑏Ĝ2F𝑇

𝑏

]
F−𝑇
𝑏

ª®®®®®®®¬
,

T (𝑅𝑒,𝑊𝑖)
[
𝝋̂1, 𝝋̂2, 𝝋̂3

]
=

©­­­­­­«
− 1−𝛽

6𝑅𝑒∇ ·
(
𝐷3T(C𝑏)

[
F𝑏Ĝ1F𝑇

𝑏
,F𝑏Ĝ2F𝑇

𝑏
,F𝑏Ĝ3F𝑇

𝑏

] )
0

1
6 F−1

𝑏
𝐷3T(C𝑏)

[
F𝑏Ĝ1F𝑇

𝑏
,F𝑏Ĝ2F𝑇

𝑏
,F𝑏Ĝ3F𝑇

𝑏

]
F−𝑇
𝑏

ª®®®®®®¬
.

It’s worth remarking that the base state (u𝑏,C𝑏) in the above operators depends on all parameter
values (𝑊𝑖, 𝑅𝑒, 𝛽, 𝑆𝑐) through (2.4). Linear stability theory is concerned with the eigenvalue
problem arising from the linearized equations, L (𝑅𝑒,𝑊𝑖) [𝝋̂] = 0. In practice, this is formally
addressed by assuming a specific form of the disturbance, and solving

L (𝑅𝑒,𝑊𝑖)
[
𝝋 (1,1) (𝑦) exp(𝑖𝑘𝑥 − 𝑖𝜔𝑡)

]
= 0, (3.3)
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for pairs (𝜔, 𝝋 (1,1) ), where 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 is the a priori unknown complex frequency, 𝝋 (1,1) is
the associated eigenmode and 𝑘 is the prespecified wave number.
Assume now that a bifurcation occurs at a certain triple (𝑊𝑖𝐿 , 𝑅𝑒𝐿 , 𝑘), i.e., there exists an

eigenmode of (3.3) such that its associated eigenfrequency is real (subsequently denoted by
𝜔𝐿 = 𝜔𝐿,𝑟 ), which marks the state of marginal stability in the temporal sense. We wish to
uncover how the eigenfunction 𝜑 (1,1) evolves as we move slightly away from the bifurcation
point. For this, consider small perturbations to all relevant parameters of the form

(𝑊𝑖, 𝑅𝑒, 𝜔𝑟 ) = (𝑊𝑖𝐿 , 𝑅𝑒𝐿 , 𝜔𝑟 ,𝐿) + 𝜀2 (𝑊𝑖1, 𝑅𝑒1, 𝜔𝑟 ,1) + . . . ,

and formally expand the operator L around (𝑅𝑒𝐿 ,𝑊𝑖𝐿) as

L(𝑅𝑒𝐿+𝜀2𝑅𝑒1,𝑊𝑖𝐿+𝜀2𝑊𝑖1) = L(𝑅𝑒𝐿 ,𝑊𝑖𝐿)+𝜀2𝑅𝑒1L ′
𝑅𝑒 (𝑅𝑒𝐿 ,𝑊𝑖𝐿)+𝜀2𝑊𝑖1L ′

𝑊𝑖 (𝑅𝑒𝐿 ,𝑊𝑖𝐿).

The subtle difference here from standard weakly nonlinear expansions lies in the fact that now
the base state obtained from (2.4) depends on the parameters𝑊𝑖 and 𝑅𝑒. To make this clear and
explicit, we write

L ′
𝑅𝑒 (𝑅𝑒𝐿 ,𝑊𝑖𝐿) =

𝑑

𝑑𝑅𝑒

����
(𝑅𝑒𝐿 ,𝑊𝑖𝐿 )

L =

(
𝜕

𝜕𝑅𝑒
+
𝜕𝑢𝑏,𝑖

𝜕𝑅𝑒

𝜕

𝜕𝑢𝑏,𝑖
+
𝜕𝐹𝑏,𝑖 𝑗

𝜕𝑅𝑒

𝜕

𝜕𝐹𝑏,𝑖 𝑗

)����
(𝑅𝑒𝐿 ,𝑊𝑖𝐿 )

L,

L ′
𝑊𝑖 (𝑅𝑒𝐿 ,𝑊𝑖𝐿) =

𝑑

𝑑𝑊𝑖

����
(𝑅𝑒𝐿 ,𝑊𝑖𝐿 )

L =

(
𝜕

𝜕𝑊𝑖
+
𝜕𝑢𝑏,𝑖

𝜕𝑊𝑖

𝜕

𝜕𝑢𝑏,𝑖
+
𝜕𝐹𝑏,𝑖 𝑗

𝜕𝑊𝑖

𝜕

𝜕𝐹𝑏,𝑖 𝑗

)����
(𝑅𝑒𝐿 ,𝑊𝑖𝐿 )

L,

with

𝜕L
𝜕𝑅𝑒

(𝑅𝑒𝐿 ,𝑊𝑖𝐿) [𝝋̂] =
©­­­«

𝛽

𝑅𝑒2
𝐿

Δû + 1−𝛽
𝑅𝑒2

𝐿

∇ ·
(
𝐷T(C𝑏)

[
F𝑏ĜF𝑇

𝑏

] )
0

1
𝑅𝑒2

𝐿
𝑆𝑐

F−1
𝑏
Δ

(
F𝑏ĜF𝑇

𝑏

)
F−𝑇
𝑏

ª®®®¬ ,
and

𝜕L
𝜕𝑊𝑖

(𝑅𝑒𝐿 ,𝑊𝑖𝐿) [𝝋̂] =
©­­«

1−𝛽
𝑅𝑒𝐿𝑊𝑖𝐿

∇ ·
(
𝐷T(C𝑏)

[
F𝑏ĜF𝑇

𝑏

] )
0

− 1
𝑊𝑖𝐿

F−1
𝑏
𝐷T(C𝑏)

[
F𝑏ĜF𝑇

𝑏

]
F−𝑇
𝑏

ª®®¬ .
Due to the complexity of the laminar equations (2.4), the base flow’s dependence on the parameters
is sought numerically, i.e., the terms 𝜕𝑢𝑏,𝑖/𝜕𝑅𝑒 and 𝜕𝐹𝑏,𝑖 𝑗/𝜕𝑅𝑒 - and the corresponding terms
in the𝑊𝑖 direction - are computed via a finite difference scheme. We note here that alternatively
one could also compute the entirety of L ′

𝑅𝑒
(and L ′

𝑊𝑖
) with a finite difference scheme.

To explore how the 𝝋 (1,1) wave develops as these parameters change, we seek solutions of (3.2)
as a weakly nonlinear expansion of the form

𝝋(𝑡, 𝑥, 𝑦) = 𝝋𝑏 (𝑦) +
𝑁∑︁
𝑙=1

∑︁
𝑞∈𝐽𝑙

𝜀𝑙
(
𝝋 (𝑙,𝑞) + 𝝋̃ (𝑙,𝑞)

)
(𝑦) exp

(
𝑖𝑞(𝑘𝑥 − 𝜔𝑟 𝑡)

)
+𝑂 (𝜀𝑁+1), (3.4)

where 𝐽𝑙 = {−𝑙,−𝑙 + 2, . . . , 𝑙 − 2, 𝑙}, and 𝝋̃ (𝑙,𝑞) is the term that represents the dependence of
𝑂 (𝜀𝑙) perturbations on the lower order G( 𝑗) terms in (2.9). For instance, 𝝋̃ (1,𝑞) = 0, 𝑞 ∈ {−1, 1},
and

𝝋̃ (2,2) =
1
2

(
0, 0, 0,

(
G2
(1,1)

)
𝑥𝑥

,

(
G2
(1,1)

)
𝑦𝑦

,

(
G2
(1,1)

)
𝑧𝑧
,

(
G2
(1,1)

)
𝑥𝑦

)
. (3.5)

To simplify the notation, let

𝐸𝑞 : (𝑡, 𝑥) ↦→ exp
(
𝑖𝑞(𝑘𝑥 − 𝜔𝑟 ,𝐿𝑡)

)
,
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and
L𝑞 [𝝋] := L[𝝋𝐸𝑞] .

Now, upon substituting the specific form of 𝝋̂ from Eq. (3.4) into (3.2), we obtain a hierarchy of
problems as follows:

𝑂 (𝜀) : L1 [𝝋 (1,1) ] = 0, (3.6a)

𝑂 (𝜀2) : L0 [𝝋 (2,0) + 𝝋̃ (2,0) ] + B[𝝋 (1,1)𝐸1, 𝝋 (1,−1)𝐸−1] + B[𝝋 (1,−1)𝐸−1, 𝝋 (1,1)𝐸1] = 0,
(3.6b)

L2 [𝝋 (2,2) + 𝝋̃ (2,2) ] + B[𝝋 (1,1)𝐸1, 𝝋 (1,1)𝐸1] = 0, (3.6c)

𝑂 (𝜀3) : L1 [𝝋 (3,1) + 𝝋̃ (3,1) ] + B[𝝋 (1,−1)𝐸−1, (𝝋 (2,2) + 𝝋̃ (2,2) )𝐸2]
+ B[(𝝋 (2,2) + 𝝋̃ (2,2) )𝐸2, 𝝋 (1,−1)𝐸−1] + B[𝝋 (1,1)𝐸1, 𝝋 (2,0) + 𝝋̃ (2,0) ]
+ B[𝝋 (2,0) + 𝝋̃ (2,0) , 𝝋 (1,1)𝐸1] + 3T [𝝋 (1,1)𝐸1, 𝝋 (1,1)𝐸1, 𝝋 (1,−1)𝐸−1]
+ 𝑅𝑒1L ′

𝑅𝑒 [𝝋 (1,1)𝐸1] +𝑊𝑖1L ′
𝑊𝑖 [𝝋 (1,1)𝐸1] − 𝑖𝜔𝑟 ,1𝝋 (1,1) =: L1 [𝝋 (3,1) ] + 𝜼 = 0,

(3.6d)
...

where 𝜼 is the known part of the last equation (3.6d). One subtlety in solving the hierarchy of
problems is maintaining the constancy of the volumetric flux. This boils down to introducing a
constant correction to the pressure gradient, 𝜕𝑥 𝑝 (2,0) , to ensure 𝝋 (2,0) has zero flux. Provided that
the bifurcation is of codimension one, equation (3.6a) (equivalent to the linear problem, (3.3))
has a non-unique solution of the form

𝐴
𝝋 (1,1)

∥𝝋 (1,1) ∥𝐿2 ( [−1,1];C7)
, 𝐴 ∈ C. (3.7)

The aim is to map out the possible values of the steady-state amplitude 𝐴 in the parameter space
(𝑊𝑖, 𝑅𝑒). Once an eigenmode of the form (3.7) is pushed through equations (3.6a) to (3.6d), an
explicit solvability condition can be derived, as detailed in the following.

3.1. Solvability condition
Let us view the functions 𝝋 (𝑖, 𝑗) : [−1, 1] → C7 as elements of 𝐿2 (

[−1, 1];C7) . The inner product
on 𝐿2 (

[−1, 1];C7) is given by†
⟨𝝋,𝝍⟩𝐿2 ( [−1,1];C7) =

∫
[−1,1]

⟨𝝋(𝑦),𝝍(𝑦)⟩C7 𝑑𝑦.

The linear problem (3.6a) implies that L1 has a nontrivial kernel. Therefore, the Fredholm
alternative theorem implies the existence of a finite dimensional subspace of solutions to the
adjoint homogeneous problem

L∗
1 [𝝍] = 0,

subject to the appropriate boundary conditions (matching those of the original problem). More-
over, the original equation (3.6d) has a solution, 𝝋 (3,1) , if and only if

⟨𝜼,𝝍⟩𝐿2 ( [−1,1];C7) = 0, ∀𝝍 ∈ ker L∗
1 satisfying the boundary conditions. (3.8)

† In the following, we use an 𝐿2 inner product on matrix valued functions as well. In this case, we simply
identify the matrices with vectors in the canonical way (i.e., we replace the C7 inner product below the
integral with a Frobenius one).
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Assuming that the bifurcation is of codimension one, we know that dim
(
ker L∗

1
)
= 1, so it suffices

to check (3.8) for any 𝝍1 ∈ ker L∗
1 that satisfies the boundary conditions. With this procedure, we

obtain the complex solvability condition

𝑎𝑅𝑒1 + 𝑏𝑊𝑖1 + 𝑐 |𝐴|2 + 𝑑𝜔𝑟 ,1 = 0, (3.9)

where

𝑎 :=
〈
L ′

𝑅𝑒 [𝝋 (1,1)𝐸1],𝝍1
〉
𝐿2 ( [−1,1];C7)

𝑏 :=
〈
L ′

𝑊𝑖 [𝝋 (1,1)𝐸1],𝝍1
〉
𝐿2 ( [−1,1];C7)

𝑐 :=
〈
B[𝝋 (1,−1)𝐸−1, (𝝋 (2,2) + 𝝋̃ (2,2) )𝐸2] + B[(𝝋 (2,2) + 𝝋̃ (2,2) )𝐸2, 𝝋 (1,−1)𝐸−1]

+ B[𝝋 (1,1)𝐸1, 𝝋 (2,0) + 𝝋̃ (2,0) ] + B[𝝋 (2,0) + 𝝋̃ (2,0) , 𝝋 (1,1)𝐸1]

+ 3T [𝝋 (1,1)𝐸1, 𝝋 (1,1)𝐸1, 𝝋 (1,−1)𝐸−1],𝝍1

〉
𝐿2 ( [−1,1];C7)

,

𝑑 :=
〈
−𝑖𝝋 (1,1) ,𝝍1

〉
𝐿2 ( [−1,1];C7) .

Equation (3.9) gives the desired relationship between the parameters (𝑊𝑖1, 𝑅𝑒1) and the steady
state amplitude 𝐴, which allows us to track how these finite amplitude states emerge from the
bifurcation point.

4. Results
As indicated above, we are interested in uncovering the nature of the initial bifurcation asso-

ciated to the centre-mode instability first identified by Garg et al. (2018) in pipe flow and, most
relevantly for us, later by Khalid et al. (2021a) in channel flow. This previous work assumed
an Oldroyd-B fluid which allows infinite polymer extension i.e. 𝐿𝑚𝑎𝑥 → ∞ for the FENE-P
model (2.1d). Given this, our objectives in what follows are two-fold. On the one hand, we want
to explore the effects of finite extensibility on the aforementioned instability. And on the other,
with the aid of the weakly nonlinear analysis, we aim to identify parameter regions where the
instability persists beyond the neutral curve to lower𝑊𝑖 in particular.

4.1. 𝛽 = 0.9, 𝐿𝑚𝑎𝑥 = 500 & 𝑆𝑐 → ∞
In order to test the weakly nonlinear analysis, we begin by examining the parameter regime
considered by Page et al. (2020) where 𝛽 = 0.9 and 𝐿𝑚𝑎𝑥 = 500. Using 𝑆𝑐 = 103 to stabilise
their time-stepping code, Page et al. (2020) observed substantial subcriticality at (𝑅𝑒,𝑊𝑖, 𝑘) =
(60, 26.9, 2) on the upper branch of the neutral curve since they were able to continue the branch
of solutions down to 𝑊𝑖 = 8.77. Figure 2 shows the neutral curve at 𝛽 = 0.9, 𝐿𝑚𝑎𝑥 = 500 with
𝑆𝑐 → ∞: see appendix A for numerical details. The neutral curve is insensitive to the choice of 𝑆𝑐
on the scale of Figure 2 provided it is≫ 102. Alongside the neutral curve, we display the results
of the weakly nonlinear analysis by plotting a curve corresponding to a finite (small) steady state
amplitude |𝐴|, as obtained from the solvability condition (3.9). The linear instability is a Hopf
bifurcation and so the steady state solutions are travelling waves (in 𝑥) with phase speed𝜔𝑟/𝑘 and
a constant amplitude which decreases to zero at the neutral curve. This finite amplitude curve in
Figure 2 clearly indicates subcriticality along the upper branch of the neutral curve. Proceeding
down to the lower branch of the curve, the Hopf bifurcation switches to being supercritical for
𝑊𝑖 ≳ 40 (the red dashed line crosses the black neutral curve).
Figure 2 confirms the subcritical behaviour observed by Page et al. (2020) at the point

(𝑊𝑖, 𝑅𝑒, 𝑘) ≈ (27, 60, 2), which is marked by a shaded square □. The corresponding bifur-
cation diagrams with respect to model parameters 𝑊𝑖 and 𝑅𝑒 are shown in Figure 3. In the
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Figure 2. (Left) Neutral curve corresponding to marginal linear stability at 𝛽 = 0.9, 𝐿𝑚𝑎𝑥 = 500, 𝑆𝑐 → ∞.
Results of the weakly nonlinear analysis are shown in the form of a curve at steady state amplitude |𝐴| = 0.4.
(Right) The development of the critical wave number, 𝑘𝑐𝑟𝑖𝑡 , along the neutral curve. Since 𝑘𝑐𝑟𝑖𝑡 varies
monotonically along the neutral curve its provides a convenient parametrization of it in subsequent figures.

Figure 3. Bifurcation diagrams at (𝑊𝑖, 𝑅𝑒, 𝑘) ≈ (27, 60, 2) (□). Only the unstable branch is displayed with
a comparison of two methods for the expansion for the conformation tensor.

figure, the newly developed approach for perturbative expansions of Hameduddin et al. (2019)
(described in §2.2) is compared with a standard expansion in the conformation tensor, C. The
two approaches are in clear agreement – a detailed discussion behind the reason for this is given
in appendix B. In this context, the real advantage of using the form of expansions established
in §2.2 is that we now have immediate access to quantities with tangible physical meaning (cf.
Figures 6, 7 and 8).
As a final check, results of the weakly nonlinear analysis are compared with a full branch

continuation computation (see appendix A for details of the method) in Figure 4. A finite but
large Schmidt number of 𝑆𝑐 = 103 had to be selected for this comparison, as the latter method
requires a diffusion term to produce reliable results. The curves are in good agreement - on top of
each other near the bifurcation point but then diverging slightly (not visible on the plots) as the
amplitude increases (as they should). This divergence, of course, is because the weakly nonlinear
analysis is based upon a 3-Fourier-mode expansion whereas the branch continuation curve is from
a 40-mode Fourier expansion.
We now examine the bifurcation on the lower branch of the neutral curve for 𝑊𝑖 > 40 to

confirm the supercriticality predicted by the weakly nonlinear analysis. In Figure 5, bifurcation
diagrams resulting from the weakly nonlinear analysis for the point △ in Figure 2 are plotted with
result from the the Fourier-Chebyshev based branch continuation algorithm. The clear agreement
we observe in the vicinity of the critical point confirms the existence of a stable supercritical
state, and validates the weakly nonlinear predictions along the lower branch of the neutral curve.
A further confirmatory test (backing the initial supercriticality) was performed at a single point
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Figure 4. Validation of the weakly nonlinear analysis at (𝑊𝑖, 𝑅𝑒, 𝑘) ≈ (27, 60, 2) (□) with a full branch
continuation prediction. The 𝐿2 norms are taken over the whole domain Ω = [0, 2𝜋/𝑘] × [−1, 1].

Figure 5. Bifurcation diagrams at point △. The 𝐿2 norms are taken over the whole domain
Ω = [0, 2𝜋/𝑘] × [−1, 1].

Figure 6. Real ( ) and imaginary ( ) parts of the unstable eigenfunction 𝝋 (1,1) at the point △. (Left)
Axial (streamwise) velocity 𝑢 (1,1) ,𝑥 and vertical velocity 𝑢 (1,1) ,𝑦 . (Middle) All four nonzero components
of G(1,1) ∈ 𝑇IPos(3), the tangent form of the polymer strain perturbation tensor. (Right) All four nonzero
components of C(1,1) ∈ Pos(3), the corresponding fluctuation tensor from a standard expansion.

using an independent, finite difference based DNS (the one used in Page et al. (2020); Dubief
et al. (2020); see also §4.3 in Buza et al. (2022)).

4.2. Flow and polymer field prediction
The various flow and polymer fields generated as part of the weakly nonlinear analysis can be
used to generate an approximation to the solution near to a bifurcation point. The structure of the
critical eigenfunction at the △ in Figure 2 is shown in Figure 6. The flow and conformation tensor
structures are familiar from previous studies (Garg et al. 2018; Khalid et al. 2021a) whereas
the Cauchy-Green perturbation tensor G(1,1) hasn’t been shown before. Figure 6 shows that all
components of G(1,1) are confined to the centerline of the channel. For instance, G(1,1) ,𝑥𝑥 only
develops a noticeable magnitude above 𝑦 = −0.2. On the other hand, 𝐶(1,1) ,𝑥𝑥 indicates that the
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Figure 7. The nonlinear mean correction 𝝋 (2,0) at the point △. (Left) Axial (streamwise) velocity 𝑢 (2,0) ,𝑥
and vertical velocity 𝑢 (2,0) ,𝑦 = 0. (Middle) All four nonzero components of G(2,0) ∈ 𝑇IPos(3), the
mean correction to the conformation tensor in its tangent form. (Right) All four nonzero components of
C(2,0) ∈ Pos(3), the corresponding tensor from a standard expansion.

Figure 8. Real ( ) and imaginary ( ) parts of the nonlinear correction 𝝋 (2,2) at the point △. (Left)
Axial (streamwise) velocity 𝑢 (2,2) ,𝑥 and vertical velocity 𝑢 (2,2) ,𝑦 . (Middle) All four nonzero components
of G(2,2) ∈ 𝑇IPos(3). (Right) All four nonzero components of C(2,2) ∈ Pos(3), the corresponding tensor
from a standard expansion.

streamwise normal stretch reaches itsmaximum towards the bottom of the channel. This difference
is explained by the shape of the laminar base state (cf. Figure 1).C𝑏 is smaller near the centerline,
thus computing G(1,1) = F−1

𝑏
C(1,1)F−𝑇

𝑏
amplifies changes in that region, i.e., G(1,1) recognizes

deformations that are large relative toC𝑏. Again, this is an immediate consequence of the fact that
the Riemannian metric on Pos(3) depends on the base point C𝑏. Physically, the new formulation
highlights that the polymeric disturbance caused by the centre mode instability is confined to a
small layer around the centerline, which would not be immediate from a standard expansion in
C (cf. right panel of Figure 6 or Figure 17 in Khalid et al. (2021a)). Similar observations were
reported in the context of transient growth analysis in Zhang (2021) (see Figures 4 and 13 therein).
Higher order disturbances are more difficult to interpret on Pos(3), but up to 𝑂 (𝜀2) can still

be thought of as consecutive geodesic perturbations (Hameduddin et al. 2019). The 𝑂 (𝜀2) terms
from the weakly nonlinear expansion are given in Figure 7, which displays the first nonlinear
mean correction 𝝋 (2,0) , and Figure 8, which shows 𝝋 (2,2) . With these fields known, the full flow
state can be approximated by evaluating the weakly nonlinear expansion (3.4) up to second order,
including |𝐴| in the shape functions as necessary. This low order approximation is compared with
a full state from the continuation tool in Figure 9 at the point ^ on the supercritical bifurcation
branch (see Figure 5).
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Figure 9. Comparison of the supercritical state at point ^ (identified in Figure 5) as predicted by the weakly
nonlinear analysis (left panel) and branch continuation (right panel) techniques. Contours show the geodesic
distance between the base and full states 𝑑 (𝐶𝑏 , 𝐶) =

√︁
tr G2, the lines correspond to the perturbation

streamfunction.

Figure 10. (Left) Neutral curve corresponding tomarginal linear stability at 𝛽 = 0.9, 𝐿𝑚𝑎𝑥 = 100, 𝑆𝑐 = 106.
Results of the weakly nonlinear analysis are shown in the form of a curve at steady state amplitude |𝐴| = 0.4.
The 𝐿𝑚𝑎𝑥 = 500 neutral curve from Figure 2 is also shown for comparison. (Right) The development of
the critical wave number, 𝑘𝑐𝑟𝑖𝑡 , along the neutral curve (corresponding curve for 𝐿𝑚𝑎𝑥 = 500 again shown
in grey).

4.3. 𝛽 = 0.9, 𝐿𝑚𝑎𝑥 = 100 & 𝑆𝑐 = 106

In this subsection, we reduce 𝐿𝑚𝑎𝑥 to 100 to explore less extensible (more realistic) polymers
and reintroduce the conformation tensor diffusion term into the governing equations (2.1c) by
considering a finite Schmidt number, 𝑆𝑐 = 106. Figure 10 shows the corresponding marginal
stability curve complemented with a finite amplitude curve from the weakly nonlinear analysis.
The 𝐿𝑚𝑎𝑥 = 500 neutral curve is also displayed for comparison in bright grey. All visible changes
are caused by the adjustment of 𝐿𝑚𝑎𝑥 : the introduction of finite 𝑆𝑐 alone has no visual effect. The
key observation from Figure 10 is that reducing 𝐿𝑚𝑎𝑥 shifts the neutral curve down in 𝑅𝑒, and
reduces the slope of the lower branch. In particular, lowering 𝐿𝑚𝑎𝑥 has a destabilizing effect in the
elastic regime (low Reynolds numbers). This counter-intuitive finding is the primary motivation
for examining the 𝑅𝑒 = 0 instability recently found by Khalid et al. (2021b) at finite 𝐿𝑚𝑎𝑥 in
§4.5.

4.4. Energy analysis
We now examine the energetic contributions of the different terms in the equations (2.1) in order
to examine the mechanisms driving the centre mode instability. This approach has proved useful
to diagnose the character of instabilities - for example Joo & Shaqfeh (1991, 1992) identified
purely elastic instabilities in curved channel flows with this procedure (see also Zhang et al.
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(2013) and Agarwal et al. (2014)). Taking an 𝐿2 inner product of the momentum equations at
𝑂 (𝜀) and the disturbance velocity field u(1,1) = (𝝋 (1,1) ,1, 𝝋 (1,1) ,2) gives (for more details see e.g.
Zhang et al. 2013) the disturbance kinetic energy equation

𝜕𝑡𝐸 :=
1
2
𝜕𝑡 ∥u(1,1) ∥2

𝐿2 = 𝒫 +ℰ +𝒲, (4.1)

where

𝒫 := −1
2

〈
∇u𝑏, u(1,1) ⊗ ū(1,1) + ū(1,1) ⊗ u(1,1)

〉
𝐿2

(ū is the complex conjugate ofu) is the disturbance kinetic energy production due to the underlying
shear of u𝑏,

ℰ := − 𝛽

𝑅𝑒
∥∇u(1,1) ∥2

𝐿2

represents the viscous dissipation and is strictly negative, and

𝒲 := − (1 − 𝛽)
2𝑅𝑒

(〈
∇u(1,1) ,T(1,1)

〉
𝐿2 +

〈
T(1,1) ,∇u(1,1)

〉
𝐿2

)
indicates the rate of work done on the fluid by the polymeric stresses, with

T(1,1) := 𝐷T(C𝑏)
[
F𝑏G(1,1)F𝑇

𝑏

]
.

Extending this procedure to identify the mechanisms behind the growth of elastic energy stored
in the polymer is well known to be problematic (Doering et al. 2006). The underlying issue is
that the elastic potential energy, which is a function of tr C, does not correspond to a norm in
the obvious fashion that the kinetic energy does. Once again, this essentially comes down to the
fact that the set Pos(3) does not constitute a linear vector space, and there is no notion of norm
available. This may be overcome by measuring disturbances in C along geodesics in Pos(3),
according to the metric induced by the Riemannian structure. The work of Hameduddin et al.
(2018) suggests that

(𝑑 (C𝑏,C))2 = (𝑑 (I,G))2 = tr
(
G𝐻G

)
,

which immediately gives us a way of quantifying the evolution of polymer disturbances as

𝐽 := ∥𝑑 (C𝑏,C)∥2
𝐿2 =

∫
[−1,1]

tr
(
G𝐻 (𝑦)G (𝑦)

)
𝑑𝑦, (4.2)

a formulationwhichwas originally proposed inHameduddin et al. (2019). This, in fact, is themain
advantage of relying on the alternative formulation of the governing equations given in equation
(2.8). This newly defined quantity 𝐽 in (4.2) is equal to ∥G∥2

𝐿2 which is a natural generalization
of the kinetic energy from (4.1).
Adopting this polymer energy measure 𝐽, an energetic evolution equation for the polymer

disturbances can now be obtained by taking an 𝐿2 inner product of G(1,1) with the linearized
disturbance equation (in a symmetric fashion) to obtain:

𝜕𝑡 𝐽 = 𝒜𝑏 +𝒜1 +𝒯 +ℰ𝑝 , (4.3)

where
𝒜𝑏 :=

〈
G(1,1) , 2sym

(
G(1,1)ℎ(u𝑏)

)〉
𝐿2 +

〈
2sym

(
G(1,1)ℎ(u𝑏)

)
,G(1,1)

〉
𝐿2

represents the contribution due to the base velocity field,

𝒜1 :=
〈
G(1,1) , 2sym

(
ℎ

(
u(1,1)

) )〉
𝐿2 +

〈
2sym

(
ℎ

(
u(1,1)

) )
,G(1,1)

〉
𝐿2

is the corresponding term capturing the effect of the disturbance velocity field u(1,1) ,

𝒯 := −
〈
G(1,1) ,F−1

𝑏 T(1,1)F−𝑇
𝑏

〉
𝐿2 −

〈
F−1
𝑏 T(1,1)F−𝑇

𝑏 ,G(1,1)
〉
𝐿2
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Figure 11. Energy analysis results across the 𝐿𝑚𝑎𝑥 = 500 neutral curve shown in Figure 2. (Left) Com-
ponents contributing to the production of the turbulent kinetic energy, 𝐸 . (Right) Components contributing
towards the evolution of the polymeric disturbance, 𝐽 (ℰ𝑝 = 0 for the limit 𝑆𝑐 → ∞ considered here and so
is not plotted). All values are normalized across the neutral curve.

is the polymeric relaxation term and

ℰ𝑝 :=
〈
G(1,1) ,

1
𝑅𝑒𝑆𝑐

F−1
𝑏 Δ

(
F𝑏G(1,1)F𝑇

𝑏

)
F−𝑇
𝑏

〉
𝐿2

+
〈

1
𝑅𝑒𝑆𝑐

F−1
𝑏 Δ

(
F𝑏G(1,1)F𝑇

𝑏

)
F−𝑇
𝑏 ,G(1,1)

〉
𝐿2

is the polymeric diffusion contribution.
The contribution of each individual term along the neutral curve of subsection 4.1 (parame-

terised by thewavenumber 𝑘𝑐𝑟𝑖𝑡 which variesmonotonically along the curve) is shown in Figure 11
for both the kinetic energy equation (4.1) (left) and polymer ‘energy’ equation (4.3) (right). Based
on the recent discovery of an inertialess linear instability that stems from the lower branch of the
neutral curve (Khalid et al. 2021b), it was anticipated that the underlying destabilizing effects
would be elastically driven along this branch. This is exactly what is seen: the polymer stress
term is the sole energising term for the disturbance kinetic energy. Figure 11, however, indicates
that this holds over the upper branch as well so that the centre-mode instability remains purely
elastic - i.e., the rate of polymer work𝒲 is the only positive contribution to 𝜕𝑡𝐸 - throughout the
entirety of the neutral curve shown. Not even at 𝑅𝑒 = 3000 do we have a positive contribution
from the turbulence production term, 𝒫, which is the term that represents inertial effects and is
responsible for the onset of instability in Newtonian turbulence. In inertia-dominated flows,𝒫 is
the primary cause of turbulent kinetic energy growth Zhang et al. (2013).
In the 𝐽 equation, the base flow (𝒜𝑏) is positive but barely contributes so that the effect of

polymeric relaxation processes, 𝒯, is balanced by the input of the perturbation velocity field
through 𝒜1 (ℰ𝑝 = 0 as 𝑆𝑐 → ∞ and so is not plotted). The dominance of 𝒜1 along the neutral
curve is due to the base polymer stretch, rather than via the base flow shear directly.
Choosing large but finite 𝑆𝑐 does not change this conclusion. Figure 12 shows the energy

analysis results for the neutral curve at 𝐿𝑚𝑎𝑥 = 100 in Figure 10 of §4.3. Again, the polymeric
viscous dissipation term, ℰ𝑝 , does not contribute to the growth of 𝐽 (ℰ𝑝 only starts to become
significant for 𝑆𝑐 ∼ 𝑂 (102)) and the energy source for the instability is solely elastic.

4.5. Inertialess limit
In this section we explore the low-𝑅𝑒 elastic limit of the centre mode instability motivated by
the finding in §4.3 that decreasing 𝐿𝑚𝑎𝑥 makes the instability move to lower 𝑅𝑒. Recent work
(Khalid et al. 2021b) has found the centre mode instability for 𝑅𝑒 = 0 in the Oldroyd-B model,
albeit at very high𝑊𝑖 and very small (1 − 𝛽) i.e. the dilute limit. Our aim here is to see if we can
find this instability at a lower, more realistic𝑊𝑖 by varying 𝐿𝑚𝑎𝑥 in the FENE-P model. Taking
the limit 𝑆𝑐 → ∞ first and then multiplying the momentum equation 2.1a through by 𝑅𝑒 allows
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Figure 12. Energy analysis results across the 𝐿𝑚𝑎𝑥 = 100 neutral curve shown in Figure 10. (Left) Com-
ponents contributing to the production of the turbulent kinetic energy, 𝐸 . (Right) Components contributing
towards the evolution of the polymeric disturbance, 𝐽. All values are normalized across the neutral curve.

Figure 13. Neutrally stable curves ( ) around the inertialess (𝑅𝑒 = 0) limit for ultra-dilute polymer
solutions at 𝛽 = 0.99 (left) and 𝛽 = 0.98 (right). The dashed lines ( ) are finite amplitude curves that
show the nonlinear behaviour indicated by the weakly nonlinear analysis.

the 𝑅𝑒 → 0 limit to be accessed smoothly. When 𝑅𝑒 = 0, the so-called creeping limit equations,

∇𝑝 = 𝛽Δu + (1 − 𝛽)∇ · T(C), (4.4a)
∇ · u = 0, (4.4b)

𝜕𝑡C + (u · ∇) C + T(C) = C · ∇u + (∇u)𝑇 · C, (4.4c)

are reached (see Buza et al. (2022) for a different distinguished limit where instead 𝑅𝑒𝑆𝑐 is kept
finite). The effect of the viscosity ratio, 𝛽, for 𝐿𝑚𝑎𝑥 → ∞ (an Oldroyd-B fluid) is already known
(see inset (B) of Figure 2 in Khalid et al. 2021b). The instability first appears at 𝛽 = 0.9905
with the critical 𝑊𝑖 decreasing as 𝛽 increases to 0.994, reaching a minimum of 𝑊𝑖 ≈ 649 (note
their value𝑊𝑖′ = 973.8 is defined using the base centreline speed) and then increases again as 𝛽
continues to increase beyond 0.994 towards 1. Thus, the lowest 𝛽 for which the 𝑅𝑒 = 0 instability
still exists (limited by the slope of the lower branch on the marginal curve) could also be decreased
if the threshold𝑊𝑖 for instability is decreased through adjusting 𝐿𝑚𝑎𝑥 . This is what we find: see
figure 13, which shows that instability at 𝑅𝑒 = 0 is possible at just over 𝑊𝑖 = 100 for 𝛽 = 0.98
and 𝐿𝑚𝑎𝑥 = 100. The finite amplitude curves generated by weakly nonlinear analysis and shown
in figure 13 further imply the existence of an unstable subcritical state in this inertialess regime.
That is, the flow continues to be nonlinearly unstable when lowering𝑊𝑖 below the threshold for
linear instability.
Figure 13 suggests further reduction in the threshold 𝑊𝑖 for instability may be possible by

making 𝐿𝑚𝑎𝑥 even smaller. Neutral curves in the𝑊𝑖 − 𝛽 plane at 𝑅𝑒 = 0 for 𝐿𝑚𝑎𝑥 = 40, 70 and
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Figure 14. (Left) Neutrally stable curves ( ) at the inertialess limit 𝑅𝑒 = 0 for ultra-dilute polymer
solutions. The dashed lines ( ) are finite amplitude curves that show the nonlinear behaviour indicated
by the weakly nonlinear analysis. (Right) Changes in the critical wave number, 𝑘𝑐𝑟𝑖𝑡 , as the neutral curves
are traversed.

100 are shown in Figure 14 along with the concomitant finite amplitude curves. Two important
features are evident from this figure. Firstly, the destabilizing effect of 𝐿𝑚𝑎𝑥 has a limit, which
appears to be in the interval 𝐿𝑚𝑎𝑥 ∈ [40, 100] for 𝑅𝑒 = 0. Secondly, the weakly nonlinear analysis
indicates that the bifurcation is subcritical with respect to 𝛽, except for high𝑊𝑖 along the lower
branch (in the𝑊𝑖 − 𝛽 plane) of the neutral curve where it becomes supercritical.
The results of an energy budget analysis are shown in Figure 15 for this 𝑅𝑒 = 0 instability

at 𝑊𝑖 = 115 and 𝛽 = 0.98 - the ▽ in Figure 14 - as a function of 𝐿𝑚𝑎𝑥 . The kinetic energy
evolution equation (4.1) is unable to handle the vanishing 𝑅𝑒 situation and so we exclusively
focus on the budget in 𝐽, the measure introduced for polymeric perturbations. Figure 15 tracks
how the disturbance growth rate, 𝜕𝑡 𝐽, and each term contributing to it changes as 𝐿𝑚𝑎𝑥 is varied
at point ▽ (cf. Figure 14) (𝜕𝑡 𝐽 = 0 indicate points on the neutral curve e.g. there is no instability
at 𝐿𝑚𝑎𝑥 = 100 at ▽). The contribution stemming from the base flow,𝒜𝑏, is still negligible, which
indicates that stability is determined by the balance between (destabilizing) 𝒜1 and (stabilizing)
𝒯. The dissipation rate associated with polymeric relaxation processes,𝒯, becomes increasing
negative as 𝐿𝑚𝑎𝑥 is decreased, ultimately causing stabilisation. As expected from Figure 14, an
optimal 𝐿𝑚𝑎𝑥 exists (≈ 60) for this particular pairing of 𝑊𝑖 and 𝛽. That it exists at all - i.e.
the FENE-P model is more unstable than the Oldroyd-B model to this inertialess centre mode
instability - is a surprise.

5. Discussion
In this paper, we have considered the character of the bifurcation of a recently-discovered

centre-mode (Garg et al. 2018; Khalid et al. 2021a) in rectilinear viscoelastic channel flow for
large 𝑅𝑒 = 𝑂 (103) down to the inertialess limit of 𝑅𝑒 = 0. Using weakly nonlinear analysis
within a formal framework which respects the positive definiteness of the conformation tensor C
(Hameduddin et al. 2018, 2019), we find that the subcriticality found by Page et al. (2020) for
one point of the neutral curve at 𝐿𝑚𝑎𝑥 = 500 is generic across the neutral curve and for different
𝐿𝑚𝑎𝑥 . Supercriticality is only found at large 𝑊𝑖 on the ‘lower’ (low-𝑅𝑒) branch of the neutral
curve in the (𝑊𝑖, 𝑅𝑒) plane otherwise the branch of travelling waves arising from the neutral
curve reach down to lower 𝑊𝑖 and the region where EIT is found. In this extended region of
parameter space, the base flow is nonlinearly unstable to disturbances of sufficient amplitude. The
threshold amplitude to trigger this instability is determined by the minimal amplitude of approach
of the stable manifold of the lower branch of travelling waves to the base flow. This is bounded
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Figure 15. The energy budget for the polymeric disturbance, 𝐽, at the inertialess limit, at point ▽
(𝑊𝑖 = 115, 𝛽 = 0.98) in Figure 14. Note that the scale for 𝜕𝑡 𝐽 (left axis) is enlarged to improve visibility.

from above by the amplitude of the lower branch itself and the one branch-tracking calculation
done so far (see Figure 3 in Page et al. 2020) indicates that this is small: the volume-averaged
trC of the travelling wave solutions stays within 5% of the base flow value even when the 𝑊𝑖

is reduced to 50% of its value at the bifurcation. Hence, for practical purposes, the base flow
may well appear linearly unstable below the neutral curve in 𝑊𝑖 (recent experiments suggest a
similar situation in 𝑅𝑒 (Choueiri et al. 2021)). Assessing how far this situation continues as 𝑊𝑖

is decreased requires, of course, a full branch continuation procedure to map out the surface of
travelling wave solutions.
By using a FENE-P fluid we have also confirmed that the centre-mode instability persists

for maximum polymer extension down to 𝐿𝑚𝑎𝑥 = 40 at least. Somewhat counterintuitively, the
introduction of finite 𝐿𝑚𝑎𝑥 is found to move the neutral curve closer to the inertialess 𝑅𝑒 = 0
limit at fixed 𝛽. Pursuing this further by entering the dilute (𝛽 → 1) limit, we also find that
finite 𝐿𝑚𝑎𝑥 can bring the linear instability recently found by Khalid et al. (2021b) down to more
physically-relevant𝑊𝑖 ≳ 110 at 𝛽 = 0.98 compared with their threshold of𝑊𝑖 ≈ 649 (based on
the bulk velocity) at 𝛽 = 0.994 for 𝐿𝑚𝑎𝑥 → ∞. Again the instability is subcritical implying that
inertialess rectilinear viscoelastic shear flow is nonlinearly unstable for even lower𝑊𝑖. Assessing
exactly how low again requires locating the saddle node (turning point) of the travelling waves as
𝑊𝑖 decreases which requires a branch continuation code.
Finally, by considering the various energy terms in the disturbance kinetic energy equation, we

have found that the centre-mode instability is purely elastic in origin even for 𝑅𝑒 = 𝑂 (103), rather
than ‘elasto-inertial’, as the underlying shear does not energise the instability. This finding is
consistent with the recent smooth connection found by Khalid et al. (2021b) to an entirely elastic
instability at 𝑅𝑒 = 0 and suggests that EIT and ET may indeed be two different extremes of the
same whole. Given that this instability is being suggested as the origin of EIT (Garg et al. 2018;
Page et al. 2020; Chaudhary et al. 2021; Khalid et al. 2021a), the importance of inertia must
emerge at finite amplitude and is perhaps already there in the travelling wave solutions especially
when they establish their ‘arrowhead’ form familiar from DNS at higher amplitudes and lower
𝑊𝑖 (Dubief et al. 2020).
In terms of experiments, the centre mode instability has recently been investigated in both

channel (Schnapp & Steinberg 2021) and pipe flow (Choueiri et al. 2021). In a pipe, (Choueiri
et al. 2021) observed evidence of the centre mode instability at high 𝑊𝑖 = 𝑂 (100) and low
(subcritical) 𝑅𝑒. More relevant to the current results are the essentially inertialess (𝑅𝑒 ≲ 0.3)
channel flow experiments of Schnapp & Steinberg (2021), which were conducted at very high
𝑊𝑖 ∈ (100, 1700]. Finite amplitude traveling waves (or ‘elastic’ waves in their terminology) were
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triggered by ‘small’ disturbances – in contrast to the ‘large’ disturbances used in Pan et al. (2013)
for 𝑅𝑒 ≲ 0.01 and 𝑊𝑖 ≲ 10. Interestingly for the calculations performed here, they estimate
the presence of a linear instability at 𝑊𝑖 = 125 ± 25. However, both studies were performed at
considerably lower values of 𝛽 than those studied in the bulk of this paper (𝛽 = 0.74 in Schnapp
& Steinberg (2021) and 𝛽 = 0.56 in Choueiri et al. (2021)). We have examined both of these
solvent viscosities in Appendix C and find that the significant reduction in 𝛽 leads to both (i)
a smaller unstable region in the 𝑊𝑖-𝑅𝑒 plane and (ii) almost uniformly supercritical behaviour
around the neutral curve. This does not preclude the possibility that the branch may bend back
down towards lower 𝑅𝑒 and 𝑊𝑖, which cannot be captured in our third order weakly nonlinear
analysis but which can be studied by branch continuation of the travelling waves.
The obvious next steps after the analysis described here – and particularly important in the

context of the experimental observations at low 𝛽 – is to employ a branch continuation procedure
to track the travelling waves produced by the centre-mode instability to finite amplitudes and
then to explore where they exist in parameter space. The inertialess limit is perhaps the most
interesting but hardest to access numerically. These travelling waves, of course, provide their
own launchpad for further (secondary) bifurcations from which subsequent solutions then suffer
tertiary bifurcations and so forth. Establishing that this bifurcation cascade occurs precisely where
EIT is observed in parameter space would provide convincing evidence of the importance of the
centre-mode instability. We hope to report on further progress in this direction in the near future
(see Buza et al. (2022)).
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Appendix A. Numerical methods
The eigenvalue problem (3.6a) and the subsequent nonlinear equations in (3.6) were solved

using a Chebyshev discretization (for the special case of 𝑅𝑒 = 0, the operators in (3.6) were based
on the creeping equations instead as discussed in the main text). Exploiting the symmetries of
the centre eigenmode, the expansions were performed over half the channel width, 𝑦 ∈ [−1, 0],
with appropriate boundary conditions to enforce the symmetry of 𝑢𝑥 , antisymmetry of 𝑢𝑦 and
appropriate symmetries for the various components of C. This approach crucially concentrates
the collocation points near both the channel boundary and the centreline where the eigenmode
is localised so that manageable truncations prove adequate. For the 𝛽 = 0.9 neutral curves, 200
Chebyshev were sufficient while higher 𝛽 values needed 300-400 Chebyshev modes due to the
increasing localization of the unstable eigenmode (see Khalid et al. (2021b)). The neutral curves
were obtained using a continuation scheme that relies on the tangent that the weakly nonlinear
analysis yields. Specifically, in the𝑊𝑖 − 𝑅𝑒 plane, this is given by substituting |𝐴| = 0 into (3.9):

𝑅𝑒1

𝑊𝑖1
= − Im(𝑑𝑏)

Im(𝑑𝑎)
.

In solving the eigenvalue problem, a shift-inverse spectral transformation Meerbergen et al.
(1994) was employed, using the eigenvalue at the previous continuation step, to isolate the critical
eigenmode. The unstable mode was then obtained via standard power iteration. All results were
cross-checked using two grid resolutions.
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Results of the weakly nonlinear analysis were validated by an independently-developed branch
continuation routine. In this, the flow solution is assumed to be steady in an appropriately-
chosen Galilean frame (i.e. a travelling wave) which allows the time derivatives to be replaced
by a spatial derivative in 𝑥 premultiplied by an a priori unknown phase speed 𝑐 = 𝜔𝑟/𝑘 . The
governing equations are then discretized in space using Fourier modes in 𝑥 and Chebyshev modes
in 𝑦 across the domain (𝑥, 𝑦) ∈ [0, 2𝜋/𝑘] × [−1, 1] to leave a high-dimensional - typically𝑂 (105)
degrees of freedom - nonlinear system of equations for the expansion coefficients. A good starting
guess for the solution and 𝑐 can be generated near the neutral curve and then the solver propagates
along the solution surface via a pseudo-arclength continuation algorithm based on a Newton-
Raphson iterative scheme (e.g. Dijkstra et al. (2014)). Simulations for the curves appearing in
Figures 4 and 5 were run at 80 Chebyshev and 40 Fourier modes (so 7×40×80×2 = 44, 800 real
degrees of freedom). Resolution independence was carefully checked at the terminal point of each
branch shown (using up to 80, 000 degrees of freedom). In this paper, the branch continuation
code was only used to confirm the weakly nonlinear analysis. A future report will describe it
in detail when the results of using it to explore solution morphology a finite distance from the
neutral curve will be presented.

Appendix B. Equivalence of the G and C formulations for weakly nonlinear
analysis

In this appendix, we show the equivalence of theG andC formulations in the context of weakly
nonlinear analyses. The only assumption required for this is

F𝑏 ∈ 𝐶0 ([−1, 1]; GL(3)
)
, (B 1)

which is fulfilled for any positive definite solution C𝑏 of (2.4) due to physical considerations
(det(F𝑏 (𝑦)) = 0 would imply that material elements are compressed to zero volume). Let
us denote by K : 𝐿2 (

[−1, 1];C7) → 𝐿2 (
[−1, 1];C7) the map translating between the two

formulations, i.e.†

K : (u, 𝑝, vec(G)) ↦→ (u, 𝑝, vec(F𝑏GF𝑇
𝑏 )).

Then K is a bounded linear operator by (B 1), with a bounded inverse K−1.
Governing equations for C (2.1) may now be obtained upon applyingK to the equations for G

(cf. (2.8)). Revisiting the sequence of problems arising in weakly nonlinear theory (3.6), now in

† The operation vec sends G to (G𝑥𝑥 ,G𝑦𝑦 ,G𝑧𝑧 ,G𝑥𝑦).
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the C formulation with 𝝋C := (𝑢𝑥 , 𝑢𝑦 , 𝑝, 𝐶𝑥𝑥 , 𝐶𝑦𝑦 , 𝐶𝑧𝑧 , 𝐶𝑥𝑦) yields

𝑂 (𝜀) : KL1K−1 [𝝋C
(1,1) ] = 0, (B 2a)

𝑂 (𝜀2) : KL0K−1 [𝝋C
(2,0) ] + KB[K−1𝝋C

(1,1)𝐸1,K−1𝝋C
(1,−1)𝐸−1]

+ KB[K−1𝝋C
(1,−1)𝐸−1,K−1𝝋C

(1,1)𝐸1] = 0, (B 2b)

KL2 [K−1𝝋C
(2,2) ] + KB[K−1𝝋C

(1,1)𝐸1,K−1𝝋C
(1,1)𝐸1] = 0, (B 2c)

𝑂 (𝜀3) : KL1 [K−1𝝋C
(3,1) ] + KB[K−1𝝋C

(1,−1)𝐸−1,K−1𝝋C
(2,2)𝐸2]

+ KB[K−1𝝋C
(2,2)𝐸2,K−1𝝋C

(1,−1)𝐸−1] + KB[K−1𝝋C
(1,1)𝐸1,K−1𝝋C

(2,0) ]

+ KB[K−1𝝋C
(2,0) ,K

−1𝝋C
(1,1)𝐸1]

+ 3KT [K−1𝝋C
(1,1)𝐸1,K−1𝝋C

(1,1)𝐸1,K−1𝝋C
(1,−1)𝐸−1]

+ 𝑅𝑒1KL ′
𝑅𝑒 [K−1𝝋C

(1,1)𝐸1] +𝑊𝑖1KL ′
𝑊𝑖 [K−1𝝋C

(1,1)𝐸1] − 𝑖𝜔𝑟 ,1𝝋
C
(1,1) = 0, (B 2d)

...

At first order, we have

ker
(
KL1K−1

)
= K kerL1,

which is of complex dimension one on the neutral curve, so that 𝝋C
(1,1) = K𝝋 (1,1) up to

complex multiplication (this degree of freedom is eliminated upon imposing (3.7)), establishing
equivalence at the level of linear stability. Substituting this into equations at second order and
comparing them with their G counterparts (3.6), we obtain

𝝋C
(2,0) = K

(
𝝋 (2,0) + 𝝋̃ (2,0)

)
, and 𝝋C

(2,2) = K
(
𝝋 (2,2) + 𝝋̃ (2,2)

)
. (B 3)

Since K is an isomorphism and the 𝝋̃ parts are already known (cf. (3.5)), (B 3) establishes
equivalence at second order. At third order, a solvability condition is derived (see §3.1) upon
taking the inner product of (B 2d) with a nonzero element of the kernel of the adjoint problem.
In the C formulation, the adjoint kernel takes the form

ker
(
KL1K−1

)∗
= ker

(
(K−1)∗L∗

1K
∗
)
= (K−1)∗ kerL∗

1,

thus, 𝝍C
1 = (K−1)∗𝝍1 up to complex multiplication (which is irrelevant because the entire

equation will be multiplied with it). Taking the inner product with 𝝍C
1 , any term of (B 2d) will

behave similarly to〈
𝑅𝑒1KL ′

𝑅𝑒 [K−1𝝋C
(1,1)𝐸1], (K−1)∗𝝍1

〉
𝐿2 ( [−1,1];C7)

= 𝑅𝑒1
〈
L ′

𝑅𝑒 [𝝋 (1,1)𝐸1],𝝍1
〉
𝐿2 ( [−1,1];C7) = 𝑅𝑒1𝑎. (B 4)

In the nonlinear terms, the same conclusion is reached once (B 3) is substituted. Thus, 𝑎, 𝑏, 𝑐 and
𝑑 are unchanged in the solvability condition (3.9).
Perhaps a more ’natural’ inner product for theG formulation is obtained upon replacing the C7

inner product under the 𝐿2 integral with a Frobenius one (equivalent to taking theG𝑥𝑦 component
twice), given that the Riemannian metric reduces to the Frobenius inner product at the base of
perturbations, I ∈ Pos(3). This change is compensated for by the adjoint kernel similarly to (B 4),
leaving the resulting solvability condition (3.9) unchanged.
Note that the above procedure in (B 3) can be continued up to arbitrary order, thereby making

generalized weakly nonlinear theories independent of the chosen formulation as well.
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Figure 16. Neutrally stable curves ( ) for low solvent viscosities 𝛽 = 0.74 (left) and 𝛽 = 0.56 (right).
The dashed lines ( ) are finite amplitude curves that show the nonlinear behaviour indicated by the
weakly nonlinear analysis.

TheG formulation does make a difference, however, in scenarios where the novel perturbation
measures are directly incorporated into the analysis. For instance, the use of (4.2) in the energy
analysis §4.4 changes proportions in the polymeric energy balance. Another such example is
transient growth analysis, recently explored using the G formulation in pipe flows (Zhang 2021),
which clearly depends on the choice of norm used in the objective functional.

Appendix C. Results at moderate 𝛽

Motivated by recent experimental results (Choueiri et al. 2021; Schnapp & Steinberg 2021)
at higher polymer concentrations, we briefly discuss the impact of reducing 𝛽 on both the
linear instability and the predictions of our weakly nonlinear analysis. We consider two solvent
viscosities, 𝛽 = 0.74 and 𝛽 = 0.56, which match the values obtained in Schnapp & Steinberg
(2021) and Choueiri et al. (2021) respectively (note the latter study was done in a pipe precluding
any direct comparison here). Neutral curves and the weakly nonlinear results are reported in
figure 16 for both Oldroyd-B fluids and FENE-P fluid with relatively high 𝐿𝑚𝑎𝑥 . The reduction
in 𝛽 noticably shrinks the region of instability in the𝑊𝑖-𝑅𝑒 plane, notably bending the lower part
of the curve - which connects to 𝑅𝑒 = 0 at high 𝛽 - upwards. Moreover, in contrast to the dilute
(𝛽 ⩾ 0.9) results in the bulk of this paper, the introduction of finite extensibility has a uniformly
stabilizing effect – this behaviour is perhaps more typical of the more realistic polymer model;
in many cases the reduction in the base-state normal stress tends to suppress more ‘interesting’
Oldroyd-B results (e.g. see the linear analyses in Ray & Zaki 2014; Page & Zaki 2015).
In addition, the weakly nonlinear results (dashed lines in figure 16) indicate almost uniformly

supercritical behaviour around the neutral curve (note the small exception at high𝑊𝑖 for 𝛽 = 0.74
and 𝐿𝑚𝑎𝑥 = 250). This finding should be contrasted to the recent experimental results at extreme
𝑊𝑖 ⩾ 100 of Schnapp & Steinberg (2021), who have observed finite amplitude traveling waves
at very low 𝑅𝑒 at 𝛽 = 0.74, and motivates further study via branch continuation of exactly where
nonlinear traveling waves are predicted to exist in the parameter space.
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