2,281 research outputs found

    Infinite-dimensional diffusions as limits of random walks on partitions

    Get PDF
    The present paper originated from our previous study of the problem of harmonic analysis on the infinite symmetric group. This problem leads to a family {P_z} of probability measures, the z-measures, which depend on the complex parameter z. The z-measures live on the Thoma simplex, an infinite-dimensional compact space which is a kind of dual object to the infinite symmetric group. The aim of the paper is to introduce stochastic dynamics related to the z-measures. Namely, we construct a family of diffusion processes in the Toma simplex indexed by the same parameter z. Our diffusions are obtained from certain Markov chains on partitions of natural numbers n in a scaling limit as n goes to infinity. These Markov chains arise in a natural way, due to the approximation of the infinite symmetric group by the increasing chain of the finite symmetric groups. Each z-measure P_z serves as a unique invariant distribution for the corresponding diffusion process, and the process is ergodic with respect to P_z. Moreover, P_z is a symmetrizing measure, so that the process is reversible. We describe the spectrum of its generator and compute the associated (pre)Dirichlet form.Comment: AMSTex, 33 pages. Version 2: minor changes, typos corrected, to appear in Prob. Theor. Rel. Field

    Asymptotics of a discrete-time particle system near a reflecting boundary

    Full text link
    We examine a discrete-time Markovian particle system on the quarter-plane introduced by M. Defosseux. The vertical boundary acts as a reflecting wall. The particle system lies in the Anisotropic Kardar-Parisi-Zhang with a wall universality class. After projecting to a single horizontal level, we take the longtime asymptotics and obtain the discrete Jacobi and symmetric Pearcey kernels. This is achieved by showing that the particle system is identical to a Markov chain arising from representations of the infinite-dimensional orthogonal group. The fixed-time marginals of this Markov chain are known to be determinantal point processes, allowing us to take the limit of the correlation kernel. We also give a simple example which shows that in the multi-level case, the particle system and the Markov chain evolve differently.Comment: 16 pages, Version 2 improves the expositio

    Non-intersecting squared Bessel paths: critical time and double scaling limit

    Get PDF
    We consider the double scaling limit for a model of nn non-intersecting squared Bessel processes in the confluent case: all paths start at time t=0t=0 at the same positive value x=ax=a, remain positive, and are conditioned to end at time t=1t=1 at x=0x=0. After appropriate rescaling, the paths fill a region in the txtx--plane as nn\to \infty that intersects the hard edge at x=0x=0 at a critical time t=tt=t^{*}. In a previous paper (arXiv:0712.1333), the scaling limits for the positions of the paths at time ttt\neq t^{*} were shown to be the usual scaling limits from random matrix theory. Here, we describe the limit as nn\to \infty of the correlation kernel at critical time tt^{*} and in the double scaling regime. We derive an integral representation for the limit kernel which bears some connections with the Pearcey kernel. The analysis is based on the study of a 3×33\times 3 matrix valued Riemann-Hilbert problem by the Deift-Zhou steepest descent method. The main ingredient is the construction of a local parametrix at the origin, out of the solutions of a particular third-order linear differential equation, and its matching with a global parametrix.Comment: 53 pages, 15 figure

    Exact Domain Integration in the Boundary Element Method for 2D Poisson Equation

    Get PDF
    Boundary value problems for Poisson equation often appear in electrical engineering applications, such as magnetic and electric field modeling and so on. In such context, effective techniques of solving such equations are subject of continuous development. This article reports an exact formula for domain integral in boundary-integral form of 2D Poisson Equation. This formula is derived for rectangle domain element

    Eynard-Mehta theorem, Schur process, and their pfaffian analogs

    Get PDF
    We give simple linear algebraic proofs of Eynard-Mehta theorem, Okounkov-Reshetikhin formula for the correlation kernel of the Schur process, and Pfaffian analogs of these results. We also discuss certain general properties of the spaces of all determinantal and Pfaffian processes on a given finite set.Comment: AMSTeX, 21 pages, a new section adde

    On Conceptually Simple Algorithms for Variants of Online Bipartite Matching

    Full text link
    We present a series of results regarding conceptually simple algorithms for bipartite matching in various online and related models. We first consider a deterministic adversarial model. The best approximation ratio possible for a one-pass deterministic online algorithm is 1/21/2, which is achieved by any greedy algorithm. D\"urr et al. recently presented a 22-pass algorithm called Category-Advice that achieves approximation ratio 3/53/5. We extend their algorithm to multiple passes. We prove the exact approximation ratio for the kk-pass Category-Advice algorithm for all k1k \ge 1, and show that the approximation ratio converges to the inverse of the golden ratio 2/(1+5)0.6182/(1+\sqrt{5}) \approx 0.618 as kk goes to infinity. The convergence is extremely fast --- the 55-pass Category-Advice algorithm is already within 0.01%0.01\% of the inverse of the golden ratio. We then consider a natural greedy algorithm in the online stochastic IID model---MinDegree. This algorithm is an online version of a well-known and extensively studied offline algorithm MinGreedy. We show that MinDegree cannot achieve an approximation ratio better than 11/e1-1/e, which is guaranteed by any consistent greedy algorithm in the known IID model. Finally, following the work in Besser and Poloczek, we depart from an adversarial or stochastic ordering and investigate a natural randomized algorithm (MinRanking) in the priority model. Although the priority model allows the algorithm to choose the input ordering in a general but well defined way, this natural algorithm cannot obtain the approximation of the Ranking algorithm in the ROM model

    Airy processes and variational problems

    Full text link
    We review the Airy processes; their formulation and how they are conjectured to govern the large time, large distance spatial fluctuations of one dimensional random growth models. We also describe formulas which express the probabilities that they lie below a given curve as Fredholm determinants of certain boundary value operators, and the several applications of these formulas to variational problems involving Airy processes that arise in physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI Proceedings: Topics in percolative and disordered systems

    Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Colloidal Drops

    Full text link
    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two-dimensions, and the deposition front, or growth line, varies spatio-temporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang (KPZ) universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by KPZ fluctuations in the presence of quenched disorder
    corecore