The present paper originated from our previous study of the problem of
harmonic analysis on the infinite symmetric group. This problem leads to a
family {P_z} of probability measures, the z-measures, which depend on the
complex parameter z. The z-measures live on the Thoma simplex, an
infinite-dimensional compact space which is a kind of dual object to the
infinite symmetric group. The aim of the paper is to introduce stochastic
dynamics related to the z-measures. Namely, we construct a family of diffusion
processes in the Toma simplex indexed by the same parameter z. Our diffusions
are obtained from certain Markov chains on partitions of natural numbers n in a
scaling limit as n goes to infinity. These Markov chains arise in a natural
way, due to the approximation of the infinite symmetric group by the increasing
chain of the finite symmetric groups. Each z-measure P_z serves as a unique
invariant distribution for the corresponding diffusion process, and the process
is ergodic with respect to P_z. Moreover, P_z is a symmetrizing measure, so
that the process is reversible. We describe the spectrum of its generator and
compute the associated (pre)Dirichlet form.Comment: AMSTex, 33 pages. Version 2: minor changes, typos corrected, to
appear in Prob. Theor. Rel. Field