67 research outputs found

    Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal hypertrophy occurs early in diabetic nephropathy, its later value is unknown. Do large kidneys still predict poor outcome in patients with diabetes and Chronic Kidney Disease (CKD)?</p> <p>Methods</p> <p>Seventy-five patients with diabetes and CKD according to a Glomerular Filtration Rate (GFR, by 51Cr-EDTA clearance) below 60 mL/min/1.73 m<sup>2 </sup>or an Albumin Excretion Rate above 30 mg/24 H, had an ultrasound imaging of the kidneys and were cooperatively followed during five years by the Diabetology and Nephrology departments of the Centre Hospitalier Universitaire de Bordeaux.</p> <p>Results</p> <p>The patients were mainly men (44/75), aged 62 ± 13 yrs, with long-standing diabetes (duration:17 ± 9 yrs, 55/75 type 2), and CKD: initial GFR: 56.5 (8.5-209) mL/min/1.73 m<sup>2</sup>, AER: 196 (20-2358) mg/24 H. Their mean kidney lenght (108 ± 13 mm, 67-147) was correlated to the GFR (r = 0.23, p < 0.05). During the follow-up, 9/11 of the patients who had to start dialysis came from the half with the largest kidneys (LogRank: p < 0.05), despite a 40% higher initial isotopic GFR. Serum creatinine were initially lower (Small kidneys: 125 (79-320) μmol/L, Large: 103 (50-371), p < 0.05), but significantly increased in the "large kidneys" group at the end of the follow-up (Small kidneys: 129 (69-283) μmol/L, Large: 140 (50-952), p < 0.005 vs initial). The difference persisted in the patients with severe renal failure (KDOQI stages 4,5).</p> <p>Conclusions</p> <p>Large kidneys still predict progression in advanced CKD complicating diabetes. In these patients, ultrasound imaging not only excludes obstructive renal disease, but also provides information on the progression of the renal disease.</p

    c-Fos induction by gut hormones and extracellular ATP in osteoblastic-like cell lines

    Get PDF
    It is widely accepted that the c-Fos gene has a role in proliferation and differentiation of bone cells. ATP-induced c-Fos activation is relevant to bone homeostasis, because nucleotides that are present in the environment of bone cells can contribute to autocrine/paracrine signalling. Gut hormones have previously been shown to have an effect on bone metabolism. In this study, we used the osteoblastic Saos-2 cell line transfected with a c-Fos-driven reporter stimulated with five gut hormones: glucose inhibitory peptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), ghrelin and obestatin, in the presence or absence of ATP. In addition, TE-85 cells were used to determine the time course of c-Fos transcript induction following stimulation with GLP-1, and GLP-2 with or without ATP, using reverse transcription qPCR. The significant results from the experiments are as follows: higher level of c-Fos induction in presence of GIP, obestatin (p = 0.019 and p = 0.011 respectively), and GIP combined with ATP (p < 0.001) using the luciferase assay; GLP-1 and GLP-2 combined with ATP (p = 0.034 and p = 0.002, respectively) and GLP-2 alone (p < 0.001) using qPCR. In conclusion, three of the gut peptides induced c-Fos, providing a potential mechanism underlying the actions of these hormones in bone which can be directed or enhanced by the presence of ATP

    Sarcopenia: etiology, clinical consequences, intervention, and assessment

    Get PDF
    The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence

    Essai d'une systématisation anthropologique du squelette craniocervical

    No full text
    Beauvieux Jean, Beauvieux Y. J. Essai d'une systématisation anthropologique du squelette craniocervical. In: Bulletins et Mémoires de la Société d'anthropologie de Paris, X° Série. Tome 3 fascicule 5-6, 1952. pp. 213-228
    corecore