1,292 research outputs found
Randomly Evolving Idiotypic Networks: Structural Properties and Architecture
We consider a minimalistic dynamic model of the idiotypic network of
B-lymphocytes. A network node represents a population of B-lymphocytes of the
same specificity (idiotype), which is encoded by a bitstring. The links of the
network connect nodes with complementary and nearly complementary bitstrings,
allowing for a few mismatches. A node is occupied if a lymphocyte clone of the
corresponding idiotype exists, otherwise it is empty. There is a continuous
influx of new B-lymphocytes of random idiotype from the bone marrow.
B-lymphocytes are stimulated by cross-linking their receptors with
complementary structures. If there are too many complementary structures,
steric hindrance prevents cross-linking. Stimulated cells proliferate and
secrete antibodies of the same idiotype as their receptors, unstimulated
lymphocytes die.
Depending on few parameters, the autonomous system evolves randomly towards
patterns of highly organized architecture, where the nodes can be classified
into groups according to their statistical properties. We observe and describe
analytically the building principles of these patterns, which allow to
calculate number and size of the node groups and the number of links between
them. The architecture of all patterns observed so far in simulations can be
explained this way. A tool for real-time pattern identification is proposed.Comment: 19 pages, 15 figures, 4 table
Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.
The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order.SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural architecture in sensory cortex that encodes stimuli. We investigated this claim by manipulating the spacing in visual cortex between sequentially presented memoranda such that some items shared cortical representations more than others while preventing perceptual interference between stimuli. We found clear evidence that short-term memory is independent of the intracortical spacing of memoranda, revealing a dissociation between perceptual and memory representations. Our data indicate that working memory relies on different neural mechanisms from sensory perception
A Schanuel property for exponentially transcendental powers
We prove the analogue of Schanuel's conjecture for raising to the power of an
exponentially transcendental real number. All but countably many real numbers
are exponentially transcendental. We also give a more general result for
several powers in a context which encompasses the complex case.Comment: 5 page
The Apollo spacecraft: A chronology. Volume 2: 8 November 1962 - 30 September 1964
A chronology of the Apollo spacecraft development and production program is presented. The subjects discussed are: (1) defining contractural relations, (2) developing hardware distinctions, and (3) developing software ground rules. Illustrations, drawings, and photographs are used extensively to supplement the technical writing. Descriptions of life support systems, communication equipment, propulsion systems, control devices, and spacecraft components are provided
Attenuation of Self-Generated Tactile Sensations Is Predictive, not Postdictive
When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause
Combinatorial structures in loops
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46265/1/209_2005_Article_BF01221880.pd
Post-Pandemic Predictors of Anxiety in College Students
Rates of anxiety among college students have increased significantly during the COVID-19 pandemic and have remained high (Elharake et al., 2023), placing students at risk for diminished academic performance, depression, and academic burnout (Rassaby et al., 2022). The goal of this study was to examine possible predictors of anxiety in a diverse group of undergraduate students post-pandemic, with the goal of informing future preventive intervention efforts. Maladaptive perfectionism, passive procrastination, active procrastination, cognitive flexibility, and social well-being were assessed as potential predictors of state and trait anxiety in a sample of 297 currently enrolled college students. Results showed that perfectionism and passive procrastination were the strongest predictors of anxiety; cognitive flexibility and social well-being were also significant correlates. These results suggest that anxiety in college students could be ameliorated by: (1) reducing the unrealistic expectations that often accompany perfectionism; (2) preventing students from developing habits of academic procrastination; (3) increasing students’ ability to respond flexibly to changing circumstances; and (4) helping students develop strategies to approach their social world more positively
Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule
We study a two-dimensional cellular automaton (CA), called Diffusion Rule
(DR), which exhibits diffusion-like dynamics of propagating patterns. In
computational experiments we discover a wide range of mobile and stationary
localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze
spatio-temporal dynamics of collisions between localizations, and discuss
possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat
Search for active-sterile neutrino mixing using neutral-current interactions in NOvA
We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05×10^(20) protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 ± 9.7(stat) ± 9.4(syst) events predicted assuming mixing only occurs between active neutrino species. No evidence for ν_μ→ν_s transitions is found. Interpreting these results within a 3+1 model, we place constraints on the mixing angles θ_(24) < 20.8° and θ_(34_ < 31.2° at the 90% C.L. for 0.05 eV^2 ≤ Δm^2_(41) ≤ 0.5 eV2, the range of mass splittings that produce no significant oscillations over the Near Detector baseline
- …