We consider a minimalistic dynamic model of the idiotypic network of
B-lymphocytes. A network node represents a population of B-lymphocytes of the
same specificity (idiotype), which is encoded by a bitstring. The links of the
network connect nodes with complementary and nearly complementary bitstrings,
allowing for a few mismatches. A node is occupied if a lymphocyte clone of the
corresponding idiotype exists, otherwise it is empty. There is a continuous
influx of new B-lymphocytes of random idiotype from the bone marrow.
B-lymphocytes are stimulated by cross-linking their receptors with
complementary structures. If there are too many complementary structures,
steric hindrance prevents cross-linking. Stimulated cells proliferate and
secrete antibodies of the same idiotype as their receptors, unstimulated
lymphocytes die.
Depending on few parameters, the autonomous system evolves randomly towards
patterns of highly organized architecture, where the nodes can be classified
into groups according to their statistical properties. We observe and describe
analytically the building principles of these patterns, which allow to
calculate number and size of the node groups and the number of links between
them. The architecture of all patterns observed so far in simulations can be
explained this way. A tool for real-time pattern identification is proposed.Comment: 19 pages, 15 figures, 4 table