6,490 research outputs found

    Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October - November 2003

    Get PDF
    We present altitude-dependent lifetimes of NOx, determined with MIPAS/ENVISAT (the Michelson Interferometer for Passive Atmospheric Sounding/the European Environment Satellite), for the Southern polar region after the solar proton event in October–November 2003. Between 50° S and 90° S and decreasing in altitude they range from about two days at 64 km to about 20 days at 44 km. The lifetimes are controlled by transport, mixing and photochemistry. We infer estimates of dynamical lifetimes by comparison of the observed decay to photochemical lifetimes calculated with the SLIMCAT 3-D Model. Photochemical loss contributes to the observed NOx depletion by 0.1% at 44 km, increasing with altitude to 45% at 64 km. In addition, we show the correlation of modelled ionization rates and observed NOx densities under consideration of the determined lifetimes of NOx, and calculate altitudedependent effective production rates of NOx due to ionization. For that we compare ionization rates of the AIMOS data base with the MIPAS measurements from 15 October–31 December 2003. We derive effective NOx-production rates to be applied to the AIMOS ionization rates which range from about 0.2 NOx-molecules per ion pair at 44 km to 0.7 NOx-molecules per ion pair at 62 km. These effective production rates are considerably lower than predicted by box model simulations which could hint at an overestimation of the modelled ionization rates

    Visualizing the multifractal wavefunctions of a disordered two-dimensional electron gas

    Full text link
    The wavefunctions of a disordered two-dimensional electron gas at the quantum-critical Anderson transition are predicted to exhibit multifractal scaling in their real space amplitude. We experimentally investigate the appearance of these characteristics in the spatially resolved local density of states of a two-dimensional mixed surface alloy Bi_xPb_{1-x}/Ag(111), by combining high-resolution scanning tunneling microscopy with spin and angle-resolved inverse-photoemission experiments. Our detailed knowledge of the surface alloy electronic band structure, the exact lattice structure and the atomically resolved local density of states enables us to construct a realistic Anderson tight binding model of the mixed surface alloy, and to directly compare the measured local density of states characteristics with those from our model calculations. The statistical analyses of these two-dimensional local density of states maps reveal their log-normal distributions and multifractal scaling characteristics of the underlying wavefunctions with a finite anomalous scaling exponent. Finally, our experimental results confirm theoretical predictions of an exact scaling symmetry for Anderson quantum phase transitions in the Wigner-Dyson classes.Comment: 10 pages, 7 figure

    Ultra-Relativistic Magnetic Monopole Search with the ANITA-II Balloon-borne Radio Interferometer

    Full text link
    We have conducted a search for extended energy deposition trails left by ultra-relativistic magnetic monopoles interacting in Antarctic ice. The non-observation of any satisfactory candidates in the 31 days of accumulated ANITA-II flight data results in an upper limit on the diffuse flux of relativistic monopoles. We obtain a 90% C.L. limit of order 10^{-19}/(cm^2-s-sr) for values of Lorentz boost factor 10^{10}<gamma at the anticipated energy E=10^{16} GeV. This bound is stronger than all previously published experimental limits for this kinematic range.Comment: updated to version accepted by Phys. Rev.

    Lowering IceCube's energy threshold for point source searches in the Southern Sky

    Get PDF
    Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν μ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (~100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.Fil: Aartsen, M. G.. University of Adelaide; AustraliaFil: Abraham, K.. Technische Universität München; AlemaniaFil: Ackermann, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Adams, J.. University Of Canterbury; Nueva ZelandaFil: Aguilar, J. A.. Université Libre de Bruxelles; BélgicaFil: Golup, Geraldina Tamara. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Wallace, A.. University of Adelaide; AustraliaFil: Wallraff, M.. Rwth Aachen University; AlemaniaFil: Wandkowsky, N.. University of Wisconsin; Estados UnidosFil: Weaver, Ch.. University of Alberta; CanadáFil: Wendt, C.. University of Wisconsin; Estados UnidosFil: Westerhoff, S.. University of Wisconsin; Estados UnidosFil: Whelan, B. J.. University of Adelaide; AustraliaFil: Whitehorn, N.. University of California at Berkeley; Estados UnidosFil: Wickmann, S.. Rwth Aachen University; AlemaniaFil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Wiebusch, C. H.. Rwth Aachen University; AlemaniaFil: Wille, L.. University of Wisconsin; Estados UnidosFil: Williams, D. R.. University of Alabama at Birmingahm; Estados UnidosFil: Wills, L.. Drexel University; Estados UnidosFil: Wissing, H.. University of Maryland; Estados UnidosFil: Wolf, M.. Stockholms Universitet; SueciaFil: Wood, T. R.. University of Alberta; CanadáFil: Woschnagg, K.. University of California at Berkeley; Estados UnidosFil: Xu, D. L.. University of Wisconsin; Estados UnidosFil: Xu, X. W.. Southern University; Estados UnidosFil: Xu, Y.. Stony Brook University; Estados UnidosFil: Yanez, J. P.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Yodh, G.. University of California at Irvine; Estados UnidosFil: Yoshida, S.. Chiba University; JapónFil: Zoll, M.. Stockholms Universitet; Sueci

    HEPPA III Intercomparison Experiment on Electron Precipitation Impacts: 1. Estimated Ionization Rates During a Geomagnetic Active Period in April 2010

    Get PDF
    Precipitating auroral and radiation belt electrons are considered an important part of the natural forcing of the climate system. Recent studies suggest that this forcing is underestimated in current chemistry-climate models. The High Energy Particle Precipitation in the Atmosphere III intercomparison experiment is a collective effort to address this point. Here, eight different estimates of medium energy electron (MEE) (urn:x-wiley:21699380:media:jgra56926:jgra56926-math-0001) ionization rates are assessed during a geomagnetic active period in April 2010. The objective is to understand the potential uncertainty related to the MEE energy input. The ionization rates are all based on the Medium Energy Proton and Electron Detector (MEPED) on board the NOAA/POES and EUMETSAT/MetOp spacecraft series. However, different data handling, ionization rate calculations, and background atmospheres result in a wide range of mesospheric electron ionization rates. Although the eight data sets agree well in terms of the temporal variability, they differ by about an order of magnitude in ionization rate strength both during geomagnetic quiet and disturbed periods. The largest spread is found in the aftermath of enhanced geomagnetic activity. Furthermore, governed by different energy limits, the atmospheric penetration depth varies, and some differences related to latitudinal coverage are also evident. The mesospheric NO densities simulated with the Whole Atmospheric Community Climate Model driven by highest and lowest ionization rates differ by more than a factor of eight. In a follow-up study, the atmospheric responses are simulated in four chemistry-climate models (CCM) and compared to satellite observations, considering both the CCM structure and the ionization forcing

    Searches at HERA for Squarks in R-Parity Violating Supersymmetry

    Get PDF
    A search for squarks in R-parity violating supersymmetry is performed in e^+p collisions at HERA at a centre of mass energy of 300 GeV, using H1 data corresponding to an integrated luminosity of 37 pb^(-1). The direct production of single squarks of any generation in positron-quark fusion via a Yukawa coupling lambda' is considered, taking into account R-parity violating and conserving decays of the squarks. No significant deviation from the Standard Model expectation is found. The results are interpreted in terms of constraints within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM and the minimal Supergravity model, and their sensitivity to the model parameters is studied in detail. For a Yukawa coupling of electromagnetic strength, squark masses below 260 GeV are excluded at 95% confidence level in a large part of the parameter space. For a 100 times smaller coupling strength masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table
    corecore