179 research outputs found

    September 2017's geoeffective space weather and impacts to Caribbean radio communications during Hurricane response

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Space Weather 16 (2018): 1190-1201, doi:10.1029/2018SW001897.Between 4 and 10 September 2017, multiple solar eruptions occurred from active region AR12673. NOAA's and NASA's well‐instrumented spacecraft observed the evolution of these geoeffective events from their solar origins, through the interplanetary medium, to their geospace impacts. The 6 September X9.3 flare was the largest to date for the nearly concluded solar cycle 24 and, in fact, the brightest recorded since an X17 flare in September 2005, which occurred during the declining phase of solar cycle 23. Rapid ionization of the sunlit upper atmosphere occurred, disrupting high‐frequency communications in the Caribbean region while emergency managers were scrambling to provide critical recovery services caused by the region's devastating hurricanes. The 10 September west limb eruption resulted in the first solar energetic particle event since 2012 with sufficient flux and energy to yield a ground level enhancement. Spacecraft at L1, including DSCOVR, sampled the associated interplanetary coronal mass ejections minutes before their collision with Earth's magnetosphere. Strong compression and erosion of the dayside magnetosphere occurred, placing geosynchronous satellites in the magnetosheath. Subsequent geomagnetic storms produced magnificent auroral displays and elevated hazards to power systems. Through the lens of NOAA's space weather R‐S‐G storm scales, this event period increased hazards for systems susceptible to elevated “radio blackout” (R3‐strong), “solar radiation storm” (S3‐strong), and “geomagnetic storm” (G4‐severe) conditions. The purpose of this paper is to provide an overview of the September 2017 space weather event, and a summary of its consequences, including forecaster, post‐event analyst, and communication operator perspectives

    Semen quality in relation to biomarkers of pesticide exposure.

    Get PDF
    We previously reported reduced sperm concentration and motility in fertile men in a U.S. agrarian area (Columbia, MO) relative to men from U.S. urban centers (Minneapolis, MN; Los Angeles, CA; New York, NY). In the present study we address the hypothesis that pesticides currently used in agriculture in the Midwest contributed to these differences in semen quality. We selected men in whom all semen parameters (concentration, percentage sperm with normal morphology, and percentage motile sperm) were low (cases) and men in whom all semen parameters were within normal limits (controls) within Missouri and Minnesota (sample sizes of 50 and 36, respectively) and measured metabolites of eight current-use pesticides in urine samples provided at the time of semen collection. All pesticide analyses were conducted blind with respect to center and case-control status. Pesticide metabolite levels were elevated in Missouri cases, compared with controls, for the herbicides alachlor and atrazine and for the insecticide diazinon [2-isopropoxy-4-methyl-pyrimidinol (IMPY)]; for Wilcoxon rank test, p = 0.0007, 0.012, and 0.0004 for alachlor, atrazine, and IMPY, respectively. Men from Missouri with high levels of alachlor or IMPY were significantly more likely to be cases than were men with low levels [odds ratios (ORs) = 30.0 and 16.7 for alachlor and IMPY, respectively], as were men with atrazine levels higher than the limit of detection (OR = 11.3). The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and metolachlor were also associated with poor semen quality in some analyses, whereas acetochlor levels were lower in cases than in controls (p = 0.04). No significant associations were seen for any pesticides within Minnesota, where levels of agricultural pesticides were low, or for the insect repellent DEET (N,N-diethyl-m-toluamide) or the malathion metabolite malathion dicarboxylic acid. These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduction in semen quality in fertile men from mid-Missouri we reported previously

    Associations between urinary metabolites of di(2-ethylhexyl) phthalate and reproductive hormones in fertile men

    Get PDF
    Published in final edited form as: Int J Androl. 2011 August ; 34(4): 369-378. doi:10.1111/j.1365-2605.2010.01095.x.Widely used man-made chemicals, including phthalates, can induce hormonal alterations through a variety of cellular and molecular mechanisms. A number of rodent and observational studies have consistently demonstrated the anti-androgenic effect of several phthalates. However, there are only limited data on the relationship between exposure to these chemicals and reproductive hormone levels in men. All men (n = 425) were partners of pregnant women who participated in the Study for Future Families in five US cities and provided urine and serum samples on the same day. Eleven phthalate metabolites were measured in urine and serum samples were analysed for reproductive hormones, including follicle-stimulating hormone, luteinizing hormone, testosterone, inhibin B and oestradiol and sex hormone-binding globulin (SHBG). Pearson correlations and parametric tests were used for unadjusted analyses, and multiple linear regression analysis was performed controlling for appropriate covariates

    Deregulation of CREB Signaling Pathway Induced by Chronic Hyperglycemia Downregulates NeuroD Transcription

    Get PDF
    CREB mediates the transcriptional effects of glucose and incretin hormones in insulin-target cells and insulin-producing β-cells. Although the inhibition of CREB activity is known to decrease the β-cell mass, it is still unknown what factors inversely alter the CREB signaling pathway in β-cells. Here, we show that β-cell dysfunctions occurring in chronic hyperglycemia are not caused by simple inhibition of CREB activity but rather by the persistent activation of CREB due to decreases in protein phophatase PP2A. When freshly isolated rat pancreatic islets were chronically exposed to 25 mM (high) glucose, the PP2A activity was reduced with a concomitant increase in active pCREB. Brief challenges with 15 mM glucose or 30 µM forskolin after 2 hour fasting further increased the level of pCREB and consequently induced the persistent expression of ICER. The excessively produced ICER was sufficient to repress the transcription of NeuroD, insulin, and SUR1 genes. In contrast, when islets were grown in 5 mM (low) glucose, CREB was transiently activated in response to glucose or forskolin stimuli. Thus, ICER expression was transient and insufficient to repress those target genes. Importantly, overexpression of PP2A reversed the adverse effects of chronic hyperglycemia and successfully restored the transient activation of CREB and ICER. Conversely, depletion of PP2A with siRNA was sufficient to disrupt the negative feedback regulation of CREB and induce hyperglycemic phenotypes even under low glucose conditions. Our findings suggest that the failure of the negative feedback regulation of CREB is the primary cause for β-cell dysfunctions under conditions of pathogenic hyperglycemia, and PP2A can be a novel target for future therapies aiming to protect β-cells mass in the late transitional phase of non-insulin dependent type 2 diabetes (NIDDM)

    Associations between Prenatal Urinary Biomarkers of Phthalate Exposure and Preterm Birth: A Pooled Study of 16 US Cohorts

    Get PDF
    Importance: Phthalate exposure is widespread among pregnant women and may be a risk factor for preterm birth. Objective: To investigate the prospective association between urinary biomarkers of phthalates in pregnancy and preterm birth among individuals living in the US. Design, Setting, and Participants: Individual-level data were pooled from 16 preconception and pregnancy studies conducted in the US. Pregnant individuals who delivered between 1983 and 2018 and provided 1 or more urine samples during pregnancy were included. Exposures: Urinary phthalate metabolites were quantified as biomarkers of phthalate exposure. Concentrations of 11 phthalate metabolites were standardized for urine dilution and mean repeated measurements across pregnancy were calculated. Main Outcomes and Measures: Logistic regression models were used to examine the association between each phthalate metabolite with the odds of preterm birth, defined as less than 37 weeks of gestation at delivery (n = 539). Models pooled data using fixed effects and adjusted for maternal age, race and ethnicity, education, and prepregnancy body mass index. The association between the overall mixture of phthalate metabolites and preterm birth was also examined with logistic regression. G-computation, which requires certain assumptions to be considered causal, was used to estimate the association with hypothetical interventions to reduce the mixture concentrations on preterm birth. Results: The final analytic sample included 6045 participants (mean [SD] age, 29.1 [6.1] years). Overall, 802 individuals (13.3%) were Black, 2323 (38.4%) were Hispanic/Latina, 2576 (42.6%) were White, and 328 (5.4%) had other race and ethnicity (including American Indian/Alaskan Native, Native Hawaiian, >1 racial identity, or reported as other). Most phthalate metabolites were detected in more than 96% of participants. Higher odds of preterm birth, ranging from 12% to 16%, were observed in association with an interquartile range increase in urinary concentrations of mono-n-butyl phthalate (odds ratio [OR], 1.12 [95% CI, 0.98-1.27]), mono-isobutyl phthalate (OR, 1.16 [95% CI, 1.00-1.34]), mono(2-ethyl-5-carboxypentyl) phthalate (OR, 1.16 [95% CI, 1.00-1.34]), and mono(3-carboxypropyl) phthalate (OR, 1.14 [95% CI, 1.01-1.29]). Among approximately 90 preterm births per 1000 live births in this study population, hypothetical interventions to reduce the mixture of phthalate metabolite levels by 10%, 30%, and 50% were estimated to prevent 1.8 (95% CI, 0.5-3.1), 5.9 (95% CI, 1.7-9.9), and 11.1 (95% CI, 3.6-18.3) preterm births, respectively. Conclusions and Relevance: Results from this large US study population suggest that phthalate exposure during pregnancy may be a preventable risk factor for preterm delivery
    corecore