2,785 research outputs found

    The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    Full text link
    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies, possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk.Comment: 34 pages, 24 figures, accepted for publication by A&

    Research in far ultraviolet filtering for space optical systems

    Get PDF
    Design and fabrication of multilayer interference filters for ultraviole

    Remote sensing of Pacific hurricane and radiometric measurements from foam and slicks

    Get PDF
    There are no author-identified significant results in this report

    A dynamical model for the heavily ram pressure stripped Virgo spiral galaxy NGC 4522

    Get PDF
    A dynamical model including ram pressure stripping is applied to the strongly HI deficient Virgo spiral galaxy NGC 4522. A carefully chosen model snapshot is compared with existing VLA HI observations. The model successfully reproduces the large-scale gas distribution and the velocity field. However it fails to reproduce the large observed HI linewidths in the extraplanar component, for which we give possible explanations. In a second step, we solve the induction equation on the velocity fields of the dynamical model and calculate the large scale magnetic field. Assuming a Gaussian distribution of relativistic electrons we obtain the distribution of polarized radio continuum emission which is also compared with our VLA observations at 6 cm. The observed maximum of the polarized radio continuum emission is successfully reproduced. Our model suggests that the ram pressure maximum occurred only ~50 Myr ago. Since NGC 4522 is located far away from the cluster center (~1 Mpc) where the intracluster medium density is too low to cause the observed stripping if the intracluster medium is static and smooth, two scenarios are envisaged: (i) the galaxy moves very rapidly within the intracluster medium and is not even bound to the cluster; in this case the galaxy has just passed the region of highest intracluster medium density; (ii) the intracluster medium is not static but moving due to the infall of the M49 group of galaxies. In this case the galaxy has just passed the region of highest intracluster medium velocity. This study shows the strength of combining high resolution HI and polarized radio continuum emission with detailed numerical modeling of the evolution of the gas and the large-scale magnetic field.Comment: 15 pages, 11 figures, accepted for publication in A&

    Ram-pressure stripped molecular gas in the Virgo spiral galaxy NGC 4522

    Full text link
    IRAM 30m 12CO(1-0) and 12CO(2-1) HERA observations are presented for the ram-pressure stripped Virgo spiral galaxy NGC 4522. The CO emission is detected in the galactic disk and the extraplanar gas. The extraplanar CO emission follows the morphology of the atomic gas closely but is less extended. The CO maxima do not appear to correspond to regions where there is peak massive star formation as probed by Halpha emission. The presence of molecular gas is a necessary but not sufficient condition for star formation. Compared to the disk gas, the molecular fraction of the extraplanar gas is 30% lower and the star formation efficiency of the extraplanar gas is about 3 times lower. The comparison with an existing dynamical model extended by a recipe for distinguishing between atomic and molecular gas shows that a significant part of the gas is stripped in the form of overdense arm-like structures. It is argued that the molecular fraction depends on the square root of the total large-scale density. Based on the combination of the CO/Halpha and an analytical model, the total gas density is estimated to be about 4 times lower than that of the galactic disk. Molecules and stars form within this dense gas according to the same laws as in the galactic disk, i.e. they mainly depend on the total large-scale gas density. Star formation proceeds where the local large-scale gas density is highest. Given the complex 3D morphology this does not correspond to the peaks in the surface density. In the absence of a confining gravitational potential, the stripped gas arms will most probably disperse; i.e. the density of the gas will decrease and star formation will cease.Comment: 11 pages, 15 figures, A&A accepted for publicatio

    Dense Cloud Ablation and Ram Pressure Stripping of the Virgo Spiral NGC 4402

    Full text link
    We present optical, HI and radio continuum observations of the highly inclined Virgo Cluster Sc galaxy NGC 4402, which show evidence for ram-pressure stripping and dense cloud ablation. VLA HI and radio continuum maps show a truncated gas disk and emission to the northwest of the main disk emission. In particular, the radio continuum emission is asymmetrically extended to the north and skewed to the west. The Halpha image shows numerous HII complexes along the southern edge of the gas disk, possibly indicating star formation triggered by the ICM pressure. BVR images at 0.5" resolution obtained with the WIYN Tip-Tilt Imager show a remarkable dust lane morphology: at half the optical radius, the dust lane of the galaxy curves up and out of the disk, matching the HI morphology. Large dust plumes extend upward for ~1.5 kpc from luminous young star clusters at the SE edge of the truncated gas disk. These star clusters are very blue, indicating very little dust reddening, which suggests dust blown away by an ICM wind at the leading edge of the interaction. To the south of the main ridge of interstellar material, where the galaxy is relatively clean of gas and dust, we have discovered 1 kpc long linear dust filaments with a position angle that matches the extraplanar radio continuum tail; we interpret this angle as the projected ICM wind direction. One of the observed dust filaments has an HII region at its head. We interpret these dust filaments as large, dense clouds which were initially left behind as the low-density ISM is stripped, but are then ablated by the ICM wind. These results provide striking new evidence on the fate of molecular clouds in stripped cluster galaxies.Comment: 17 pages, 4 figures, accepted for publication in AJ. See ftp://ftp.astro.yale.edu/pub/hugh/papers/crowl_n4402.ps.gz for a version with high-resolution figure

    The 90 GHz radiometric imaging

    Get PDF
    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system

    Large-scale radio continuum properties of 19 Virgo cluster galaxies The influence of tidal interactions, ram pressure stripping, and accreting gas envelopes

    Get PDF
    Deep scaled array VLA 20 and 6cm observations including polarization of 19 Virgo spirals are presented. This sample contains 6 galaxies with a global minimum of 20cm polarized emission at the receding side of the galactic disk and quadrupolar type large-scale magnetic fields. In the new sample no additional case of a ram-pressure stripped spiral galaxy with an asymmetric ridge of polarized radio continuum emission was found. In the absence of a close companion, a truncated HI disk, together with a ridge of polarized radio continuum emission at the outer edge of the HI disk, is a signpost of ram pressure stripping. 6 out of the 19 observed galaxies display asymmetric 6cm polarized emission distributions. Three galaxies belong to tidally interacting pairs, two galaxies host huge accreting HI envelopes, and one galaxy had a recent minor merger. Tidal interactions and accreting gas envelopes can lead to compression and shear motions which enhance the polarized radio continuum emission. In addition, galaxies with low average star formation rate per unit area have a low average degree of polarization. Shear or compression motions can enhance the degree of polarization. The average degree of polarization of tidally interacting galaxies is generally lower than expected for a given rotation velocity and star formation activity. This low average degree of polarization is at least partly due to the absence of polarized emission from the thin disk. Ram pressure stripping can decrease whereas tidal interactions most frequently decreases the average degree of polarization of Virgo spiral galaxies. We found that moderate active ram pressure stripping has no influence on the spectral index, but enhances the global radio continuum emission with respect to the FIR emission, while an accreting gas envelope can but not necessarily enhances the radio continuum emission with respect to the FIR emission.Comment: 37 pages, 26 figures, accepted for publication in A&
    corecore