55,742 research outputs found
Global behavior of cosmological dynamics with interacting Veneziano ghost
In this paper, we shall study the dynamical behavior of the universe
accelerated by the so called Veneziano ghost dark energy component locally and
globally by using the linearization and nullcline method developed in this
paper. The energy density is generalized to be proportional to the Hawking
temperature defined on the trapping horizon instead of Hubble horizon of the
Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the
fate of the universe and present the bifurcation phenomenon of the dynamical
system of the universe. It seems that the universe could be dominated by dark
energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE
Mastering the Master Space
Supersymmetric gauge theories have an important but perhaps under-appreciated
notion of a master space, which controls the full moduli space. For
world-volume theories of D-branes probing a Calabi-Yau singularity X the
situation is particularly illustrative. In the case of one physical brane, the
master space F is the space of F-terms and a particular quotient thereof is X
itself. We study various properties of F which encode such physical quantities
as Higgsing, BPS spectra, hidden global symmetries, etc. Using the plethystic
program we also discuss what happens at higher number N of branes. This letter
is a summary and some extensions of the key points of a longer companion paper
arXiv:0801.1585.Comment: 10 pages, 1 Figur
On Berenstein-Douglas-Seiberg Duality
I review the proposal of Berenstein-Douglas for a completely general
definition of Seiberg duality. To give evidence for their conjecture I present
the first example of a physical dual pair and explicitly check that it
satisfies the requirements. Then I explicitly show that a pair of toric dual
quivers is also dual according to their proposal. All these computations go
beyond tilting modules, and really work in the derived category. I introduce
all necessary mathematics where needed.Comment: 22 pages, LaTe
Supersymmetry and the Anomalous Anomalous Magnetic Moment of the Muon
The recently reported measurement of the muon's anomalous magnetic moment
differs from the standard model prediction by 2.6 standard deviations. We
examine the implications of this discrepancy for supersymmetry. Deviations of
the reported magnitude are generic in supersymmetric theories. Based on the new
result, we derive model-independent upper bounds on the masses of observable
supersymmetric particles. We also examine several model frameworks. The sign of
the reported deviation is as predicted in many simple models, but disfavors
anomaly-mediated supersymmetry breaking.Comment: 4 pages, 4 figures, version to appear in Phys. Rev. Let
General stationary charged black holes as charged particle accelerators
We study the possibility of getting infinite energy in the center of mass
frame of colliding charged particles in a general stationary charged black
hole. For black holes with two-fold degenerate horizon, it is found that
arbitrary high center-of-mass energy can be attained, provided that one of the
particle has critical angular momentum or critical charge, and the remained
parameters of particles and black holes satisfy certain restriction. For black
holes with multiple-fold degenerate event horizons, the restriction is
released. For non-degenerate black holes, the ultra-high center-of-mass is
possible to be reached by invoking the multiple scattering mechanism. We obtain
a condition for the existence of innermost stable circular orbit with critical
angular momentum or charge on any-fold degenerate horizons, which is essential
to get ultra-high center-of-mass energy without fine-tuning problem. We also
discuss the proper time spending by the particle to reach the horizon and the
duality between frame dragging effect and electromagnetic interaction. Some of
these general results are applied to braneworld small black holes.Comment: 23 pages, no figures, revised version accepted for publication in
Phys. Rev.
First Stereoscopic Coronal Loop Reconstructions from Stereo Secchi Images
We present the first reconstruction of the three-dimensional shape of
magnetic loops in an active region from two different vantage points based on
simultaneously recorded images. The images were taken by the two EUVI
telescopes of the SECCHI instrument onboard the recently launched STEREO
spacecraft when the heliocentric separation of the two space probes was 12
degrees. We demostrate that these data allow to obtain a reliable
three-dimensional reconstruction of sufficiently bright loops. The result is
compared with field lines derived from a coronal magnetic field model
extrapolated from a photospheric magnetogram recorded nearly simultaneously by
SOHO/MDI. We attribute discrepancies between reconstructed loops and
extrapolated field lines to the inadequacy of the linear force-free field model
used for the extrapolation.Comment: 6 pages, 5 figure
Parametric study of cavity length and mirror reflectivity in ultralow threshold quantum well InGaAs/AlGaAs lasers
Record low CW threshold currents of 16 ÎĽA at-room temperature and 21 ÎĽA at cryogenic temperature have been demonstrated in buried heterostructure strained layer, single quantum well InGaAs/AlGaAs lasers with a short cavity length and high reflectivity coatings
- …