731 research outputs found

    Quantum Monte Carlo Studies of Relativistic Effects in Light Nuclei

    Get PDF
    Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body potentials and their boost corrections. In this work we use the variational Monte Carlo method to study two kinds of relativistic effects in the binding energy of 3H and 4He. The first is due to the nonlocalities in the relativistic kinetic energy and relativistic one-pion exchange potential (OPEP), and the second is from boost interaction. The OPEP contribution is reduced by about 15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of 0.4 (1.9) MeV in 3H (4He) and account for 37% of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians.Comment: 33 pages, RevTeX, 11 PostScript figures, submitted to Physical Review

    Order N photonic band structures for metals and other dispersive materials

    Full text link
    We show, for the first time, how to calculate photonic band structures for metals and other dispersive systems using an efficient Order N scheme. The method is applied to two simple periodic metallic systems where it gives results in close agreement with calculations made with other techniques. Further, the approach demonstrates excellent numerical stablity within the limits we give. Our new method opens the way for efficient calculations on complex structures containing a whole new class of material.Comment: Four pages, plus seven postscript figures. Submitted to Physical Review Letter

    Quadratic momentum dependence in the nucleon-nucleon interaction

    Full text link
    We investigate different choices for the quadratic momentum dependence required in nucleon-nucleon potentials to fit phase shifts in high partial-waves. In the Argonne v18 potential L**2 and (L.S)**2 operators are used to represent this dependence. The v18 potential is simple to use in many-body calculations since it has no quadratic momentum-dependent terms in S-waves. However, p**2 rather than L**2 dependence occurs naturally in meson-exchange models of nuclear forces. We construct an alternate version of the Argonne potential, designated Argonne v18pq, in which the L**2 and (L.S)**2 operators are replaced by p**2 and Qij operators, respectively. The quadratic momentum-dependent terms are smaller in the v18pq than in the v18 interaction. Results for the ground state binding energies of 3H, 3He, and 4He, obtained with the variational Monte Carlo method, are presented for both the models with and without three-nucleon interactions. We find that the nuclear wave functions obtained with the v18pq are slightly larger than those with v18 at interparticle distances < 1 fm. The two models provide essentially the same binding in the light nuclei, although the v18pq gains less attraction when a fixed three-nucleon potential is added.Comment: v.2 important corrections in tables and minor revisions in text; reference for web-posted subroutine adde

    Phenomenological Lambda-Nuclear Interactions

    Full text link
    Variational Monte Carlo calculations for Λ4H{_{\Lambda}^4}H (ground and excited states) and Λ5He{_{\Lambda}^5}He are performed to decipher information on Λ{\Lambda}-nuclear interactions. Appropriate operatorial nuclear and Λ{\Lambda}-nuclear correlations have been incorporated to minimize the expectation values of the energies. We use the Argonne υ18\upsilon_{18} two-body NN along with the Urbana IX three-body NNN interactions. The study demonstrates that a large part of the splitting energy in Λ4H{_{\Lambda}^4}H (0+1+0^+-1^+) is due to the three-body Λ{\Lambda} NN forces. Λ17O_{\Lambda}^{17}O hypernucleus is analyzed using the {\it s}-shell results. Λ\Lambda binding to nuclear matter is calculated within the variational framework using the Fermi-Hypernetted-Chain technique. There is a need to correctly incorporate the three-body Λ{\Lambda} NN correlations for Λ\Lambda binding to nuclear matter.Comment: 18 pages (TeX), 2 figure

    Spin-Isospin Structure and Pion Condensation in Nucleon Matter

    Get PDF
    We report variational calculations of symmetric nuclear matter and pure neutron matter, using the new Argonne v18 two-nucleon and Urbana IX three-nucleon interactions. At the equilibrium density of 0.16 fm^-3 the two-nucleon densities in symmetric nuclear matter are found to exhibit a short-range spin-isospin structure similar to that found in light nuclei. We also find that both symmetric nuclear matter and pure neutron matter undergo transitions to phases with pion condensation at densities of 0.32 fm^-3 and 0.2 fm^-3, respectively. Neither transtion occurs with the Urbana v14 two-nucleon interaction, while only the transition in neutron matter occurs with the Argonne v14 two-nucleon interaction. The three-nucleon interaction is required for the transition to occur in symmetric nuclear matter, whereas the the transition in pure neutron matter occurs even in its absence. The behavior of the isovector spin-longitudinal response and the pion excess in the vicinity of the transition, and the model dependence of the transition are discussed.Comment: 44 pages RevTeX, 15 postscript figures. Minor modifications to original postin

    Femtometer Toroidal Structures in Nuclei

    Get PDF
    The two-nucleon density distributions in states with isospin T=0T=0, spin SS=1 and projection MSM_S=0 and ±\pm1 are studied in 2^2H, 3,4^{3,4}He, 6,7^{6,7}Li and 16^{16}O. The equidensity surfaces for MSM_S=0 distributions are found to be toroidal in shape, while those of MSM_S=±\pm1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r<2r<2 fm in all these nuclei. They provide new insights and simple explanations of the structure and electromagnetic form factors of the deuteron, the quasi-deuteron model, and the dpdp, dddd and αd\alpha d LL=2 (DD-wave) components in 3^3He, 4^4He and 6^6Li. The toroidal distribution has a maximum-density diameter of \sim1 fm and a half-maximum density thickness of \sim0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD.Comment: 35 pages in REVTeX, 25 PostScript figure

    Two-nucleon emission in the longitudinal response

    Get PDF
    The contribution of the two-nucleon emission in the longitudinal response for inclusive electron scattering reactions is studied. The model adopted to perform the calculations is based upon Correlated Basis Function theory but it considers only first order terms in the correlation function. The proper normalization of the wave function is ensured by considering, in addition to the usually evaluated two-point diagrams, also the three-point diagrams. Results for the 12C nucleus in the quasi-elastic region are presented.Comment: 7 pages, 4 Postscript figure

    TAPE-TETHER DESIGN FOR DE-ORBITING FROM GIVEN ALTITUDE AND INCLINATION

    Get PDF
    ABSTRACT The product Π of the tether-to-satellite mass ratio and the probability of tether cuts by small debris must be small to make electrodynamic bare tethers a competitive and useful de-orbiting technology. In the case of a circular orbit and assuming a model for the debris population, the product Π can be written as a function that just depends on the initial orbit parameters (altitude and inclination) and the tether geometry. This formula, which does not contain the time explicitly and ignores the details of the tether dynamics during the de-orbiting, is used to find design rules for the tape dimensions and the orbit parameter ranges where tethers dominate other de-orbiting technologies like rockets, electrical propulsion, and sails

    Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 and 2003 field campaigns

    No full text
    International audienceA wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Five distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that some, but not all, VOC classes are underestimated in the emissions inventory by factors of 1.1 to 3
    corecore