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ABSTRACT

The product Π of the tether-to-satellite mass ratio and the
probability of tether cuts by small debris must be small
to make electrodynamic bare tethers a competitive and
useful de-orbiting technology. In the case of a circular
orbit and assuming a model for the debris population, the
product Π can be written as a function that just depends
on the initial orbit parameters (altitude and inclination)
and the tether geometry. This formula, which does not
contain the time explicitly and ignores the details of the
tether dynamics during the de-orbiting, is used to find de-
sign rules for the tape dimensions and the orbit parame-
ter ranges where tethers dominate other de-orbiting tech-
nologies like rockets, electrical propulsion, and sails.
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1. INTRODUCTION

Since a notable agreement about the importance of space
debris remediation and mitigation exists, proactive ac-
tions by the space community are required. The request
to limit the orbital lifetime of spacecrafts to a period no
longer than 25 years is an important step in this direction.
Whether a global decision about the disposal of launched
satellites at the end of their lives is taken and/or missions
to capture and eliminate current space debris will be car-
ried out, an efficient de-orbiting technology is needed.
Among several characteristic, such a technology should
be light, cover a broad range of satellite masses, and work
for the altitudes and inclinations where a high collision
risk exists (1000 km and 82o, 800 km and 98o and 850
km and 71o) [1].

Electrodynamic bare tether is a very promising concept
that satisfies the above conditions. Since sails are not
effective for the altitudes and the high masses of inter-
est and electric propulsion presents several drawbacks (in
term of reliability, attitude control and power supply),
rockets seems to be the best device to compare with. On
the other hand, the de-orbiting device-to-satellite mass ra-
tio should be the main figure of merit and it may govern
the orbital parametric domain (inclination and altitude)

where tethers or rockets dominate. In addition to the
mass ratio, tethers should satisfy an additional require-
ment, which rockets are free of; the cut probability of
tapes along the full de-orbiting should be below certain
design threshold.

Past missions are not conclusive about tether survivabil-
ity [2]. In SEDS-2 a tether about 20 km was cut after 3.7
days after its deployment. The remaining 7.2 km attached
to the upper stage of the Delta II survived 54 days until
the re-entry. It is remarkable that SEDS-2 flied at a low
orbit of 350 km altitude where the debris flux is expected
to be low and the sever probability should be small. Up
to now it is unclear whether the early cut of SEDS-2 is
representative or just an unfortunate event. On the other
hand, in TiPS mission a 4 km long tether survived dur-
ing about 10 years. This period is one and half orders of
magnitude larger than the characteristic time needed by
an electrodynamic tether to complete a full de-orbiting
mission (typically few months).

A previous work discussed the performances and design
criteria for bare tethers in terms of drag efficiency (de-
fined as the Lorentz force versus the tether mass) [3].
Drag efficiency, however, is not the only important fig-
ure of merit and cut probability should also be consid-
ered. This work combines the cut probability equation for
tape tethers derived in Ref. [4] with a simple de-orbiting
model to find a formula for the product of the tether-to-
satellite mass ratio and the cut probability, Π. This tape-
tether design formula, which does not involve the time,
only depends on the orbital parameters and the tether ge-
ometry. By looking for its minimum, the optimal tape
geometry for an specific mission can be found and de-
termine whether or not the tethers dominate the rocket in
term of mass cost.

The physical reason underlying the optimum value for
the tether geometry is a competition between several fac-
tors. For instance, given width and thickness values, long
tethers are more massive and have large front areas ex-
posed to the debris flux. However, since the collected
current is higher, they complete the deorbiting faster (a
good feature from the tether survival point of view). The
quantitative weight of all these factors are included in
the cut probability and the de-orbiting equations that, if
combined, provide a simple formula for the dimension-
less product of the mass ratio and the sever probability.



10
−4

10
−3

10
−2

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Diameter, δ(m)

F
lu

x
, 

o
b

j/
m

2
.y

r

F vs δ at incl: 63
°
, 20

°

 

 

600km, 63
°

800km,63
°

1400km, 63
°

600km, 20
°

800km,20
°

1400km, 20
°

Figure 1. Flux versus debris diameter at different LEO
altitudes and inclinations (ORDEM 2000).

The paper is organized as follows. Section 2 briefly sum-
marizes the results of Ref. [4] and presents the cut prob-
ability formula for a tape tether. A simple de-orbiting
model for a bare electrodynamic tether is presented in
Sec. 3. The results of Sec. 2 and 3 are used in Sec. 4
to derive the tape-tether design formula. The procedure
to choose the optimum tape geometry is discussed. Con-
clusions are summarized in Sec. 5.

2. SURVIVABILITY OF A TAPE TETHER

Due to its geometry, with its length much larger than
cross-section dimensions, tethers have a non-negligible
sever probability. Here we consider a tape tether of length
L, width w and thickness h that, as shown in Ref [4], has
a probability of survival of about one and half orders of
magnitude higher than a round tether of equal mass and
length. The fatal impact rate per unit length is estimated
as

ṅc ≡
1

L

dNc

dt
= −

∫ π/2

0

dθ

π/2

∫ δ∞

δm

Deff (θ, δ)
dF

dδ
dδ

(1)
where Deff is an effective diameter given by

Deff = W ′(θ) + δ − δm (2)

with
W ′(θ) ≡ w cos θ + h sin θ (3)

In Eq. 1, δ represents the debris diameter and F (δ)
the cumulative debris flux, given by ESA’s Master or
NASA’s ORDEM models. Figure 1 shows an example of
the fluxes versus the debris diameter given by ORDEM
model at two different inclinations and several altitudes.

For our calculation we set δ∞ = 1m in Eq. 1, assum-
ing satellites will maneuver to avoid collision with larger
object. We emphasize that, unlike other de-orbiting tech-
nology like sails, tethers could have certain maneuver ca-
pability by controlling the hollow-cathode behavior. The
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Figure 2. Debris diameter δ∗ [panel (a)], exponent n1

[panel (b)], and F∗ [panel (c)] versus the altitude at in-
clination 630.

lower limit in the integral of Eq. 1, δm, is estimated by
energy considerations as [4]

δm =

{

fmW ′(θ) θ < θ∗

δ∗m ≡ 1
3

√

4wh
π θ > θ∗

(4)

where θ∗ is given by the condition δ∗m = fmW ′(θ∗) and
fm is a constant about 0.25 and 0.33. Here we shall use
the value fm = 1/3.

Equation 1 is general and it allows to compute the fatal
impact rate per unit length ṅc for a given flux F (δ) and
a tape width and thickness. In the particular case of OR-
DEM model and for preliminary design considerations,
the flux is approximated by two power laws (see Fig. 1)

F (δ) =

{

F∗

(

δ∗
δ

)n1

δ < δ∗
F∗

(

δ∗
δ

)n2

δ > δ∗
(5)

where the exponents n1 and n2, the debris diameter δ∗
where the two power laws meet and the flux value F∗

depend mainly on the altitudes. Figure 2 shows some of
this quantities for an orbit of 630 of inclination and 2013.
The exponentn1 takes values from 3 to 4.3 and the debris
diameter δ∗ is about 2cm (close to the maximum width
for the OML collection).

Using Eq. 5 in Eq. 1 yields the following close expres-
sion for the fatal impact rate per unit length [5]:

ṅc ≈ A(n1)
h1−

n1

2

wn1/2
δn1

∗
F∗ (6)

with

A(n1) ≡
4

π2

(

3

2

√
π

)n1 3n1 + 2

3(n1 − 2)
(7)

We remark that the above equation does not depend on
the cumulative flux beyond δ∗, as characterized by the
exponent value n2.



3. DE-ORBITING MODEL

The energy equation of a bare tether of density ρ and con-
ductivity σc carrying the length averaged current Iav is

d

dt

(

1

2
MSv

2

)

= LIav (ut ×B) · v (8)

where MS is the mass of the satellite and we took a tether
perfectly aligned with the local vertical ut. For simplic-
ity we will also assumed that the orbit evolves in a quasi-
circular manner with velocity v2 = GME/(RE + H).
Here ME and RE are the Earth mass and radius, respec-
tively.

Neglecting the potential drop along the plasma contactor
and assuming a bare tether following the OML current
collection law, the average current Iav normalized with
the short circuit current Isc ≡ σcEmwh

iav(ξ) ≡
Iav
Isc

(9)

is a function of just a dimensionless parameter ξ that in-
volves tether geometry and ambient parameters [6]

ξ ≡
L

h2/3l1/3
, l ≡

9π2

128
×

meσ
2
c

e2
×

Em

N2
∞

(10)

Here N∞ is the plasma density and Em = (v × B) · ut

is the motional electric field that typically takes values
about 100− 150V/km. The function iav versus ξ can be

seen in Fig. 3. It behaves as iav ∼ 0.3ξ3/2 for ξ << 1
and it takes the exact value iav = 1− 1/ξ for ξ > 4.

Now, introducing the tether mass mt = ρLwh and using
the definitions of iav and Em, Eq. 8 becomes

MS

mt
×

dH

dt
= −2iav

σc

ρ
× (Re +H)×

E2
m

v2
(11)

4. TAPE-TETHER DESIGN FORMULA

The tape-tether design formula is obtained by making the
ratio of Eq. 1 and 11 and integrating from the initial to
the final altitudes H0 and HF :

Π ≡
mt

MS
Nc =

∫ H0

HF

(Re +HF )dH

2(Re +H)2
ρv2f
σcE2

m

×

×
ξ

iav(ξ)
l1/3h2/3 ṅc (12)

This formula does not involve the time explicitly and ig-
nores the detail of the de-orbiting trajectory. Its left hand
side should be as small as possible to make tethers com-
petitive (mt/MS small ) and operational (Nc small). The
right hand side (RHS) only involves the tether geometry
(L, w and h) and the orbit properties (altitudes and in-
clination), allowing an optimum design for each mission.
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Figure 3. The functions iav, ξ and ξ/iav versus the di-

mensionless variable ξ ≡ L/h2/3l1/3

We remark that the RHS also depends on: (i) the epoch
due to the plasma density (appearing in ξ) variations dur-
ing the solar cycle and (ii) the full position vector r and
not just on its modulus r = RE+H through the motional
electric field Em and the plasma density.

The factor ξ/iav(ξ) appearing in the RHS of Eq. 12
deserve some attention. As Fig. 3 shows, the function
ξ/iav(ξ) presents a minimum, indicating that an optimum

value of the tether geometry (the ratio L/h2/3) exists. We
remark that this result is universal; other effects here ig-
nored, such as plasma contactor impedance or making the
tether operates beyond the OML regime because its width
would be large, does not qualitatively affect to this opti-
mum because the main features of the iav function are
not modified. Fig. 3 also indicates that a well-designed
tether should operate in a regime where ohmic effects are
neither dominant but nor negligible.

For preliminary mission analysis one can use the approx-
imation of ṅc found in Sec. 2 in the case of ORDEM
model. Substituting Eq. 6 in Eq. 12 yields

Π =

∫ H0

HF

(Re +HF )dH

2(Re +H)2
ρv2f
σcE2

m

ξ

iav(ξ)
×

× F∗A(n1)
l1/3δn1

∗

wn1/2
h(10−3n1)/6 (13)

Given a certain tether geometry, epoch, and orbit inclina-
tion, the RHS in Eq. 13 can be computed as follows. For
an altitude within the range H0 − HF , we find the av-
eraged value of the function inside the integral for many
periods along a circular orbit of such an altitude. Since
a single hollow-cathode is assumed, we set to zero the
value of the function during the orbit segment where the
motional electric field does not point away from the hol-
low cathode, a situation that may occur for orbits with
high inclinations as in Sun-synchronous orbits. In this
calculations the magnetic field and the plasma density are
taken from the IGRF [7] and the IRI [8] models respec-
tively. Using this procedure a table with the altitude and
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the averaged value of the function is found and used af-
terwards to compute the integral in Eq. 13.

Figure 4 shows the productPi versus the ratio L/h2/3 for
a given orbit and different widths. The minimum of the
function, consequence of the ξ/iav factor, happens about

L/h2/3 ≈ 0.8×106m1/3. The minimum, however, is not
very pronounced, indicating that a margin for the tether
dimensions exists. Clearly, wider tapes present better per-
formances; the effect of the thickness (not shown) is not
very important.

5. DISCUSSION

The tether-to-satellite mass ratio and the cut probabil-
ity are two figure of merits for electrodynamic tethers.
The product of both quantities can be written as a time-
independent function, just involving the tether geometry
and the orbit properties. The analysis shows that an opti-

mum choice of the ratio L/h2/3 minimizes such a prod-
uct. The tether would operate in a regime with ohmic
effect not dominant but neither negligible.

The cut probability model shows that tether survivability
is enhanced for wider tapes. However, tape width is lim-
ited by different factors, like the electron current collec-
tion. We recall that, for a given electron-to-ion tempera-
ture ratio Te/Ti and normalized bias eΦp/kTe, there is a
maximum tape width to operate within the OML regime
and collect the maximum current IOML[9]. Beyond this
regime the ratio I/IOML falls below one [10]. Current
collection, however, is not expected to be the most limit-
ing factor (Fig. 4 in Ref. [10] shows that the current drop
will be below 10% for reasonable tether widths).

In addition to the date and the orbital parameters, the full
tether dimensioning requires two additional data. The
first one, Nc, is a design decision that is found by a bal-
ance of risk and economical considerations. The second

is the mass of the satellite MS . The design scheme is as
follows. For a given thickness value h, the width w and
the lengthL is found by solving two coupled equations (i)
the minimum of the RHS of Eq. 13 and (ii) the condition
mt = ρLwh together with Eq. 13 itself. This procedure
can be repeated for several h values within a reasonable
range (30-200 µm, say). The thickness could be used to
find a better value of the ratio mt/MS , although its im-
pact is not expected to be very important.

In addition to the conductive tether mass mt, other sub-
systems should be taken into account. The most impor-
tant are the deployer, the hollow-cathode, the power sys-
tem and (possibly) an inert tether or a damper to prevent
dynamical instabilities. All these subsystem may repre-
sent a mass below two or three times mt. We also remark
that the presented design scheme should be understood
as a preliminary analysis to bound the main parameter of
the tether and carry out trade off analysis. For a specific
mission, detailed calculations including the full dynamic
of the tether would be required.

Preliminary analysis taking into account the full mass of
the tether system indicates that tethers are the best tech-
nology at the third high risk orbit pointed out in the Intro-
duction (altitude 850 km and inclination 71o). For higher
inclinations they are still competitive, thanks to the con-
tributions of the eccentricity of the Earth magnetic field
and its high harmonics [11]. First computations of the
cut probability using ESA’s MASTER model seems to
be more optimistic than ORDEM. A detailed paper about
the optimization method in tape-tether sizing is currently
under preparation [12]. It will include a parametric sur-
vey and examples of tether dimensioning for specific mis-
sions.

Under the FP7 Space Project BETs we are currently de-
veloping the computer program BETsMA. This software
is aimed to carry out preliminary Mission Analysis using
Bare Electrodynamic Tethers. It will implement the algo-
rithm here presented to find the optimum tether geome-
try with the full debris model and also a simple deorbit-
ing simulator including the Lorenz force and the aerody-
namic drag. Using its friendly user interface the user will
be able to obtain useful information for an specific mis-
sion like the deorbit time, masses of the different com-
ponents of the tether system or the survival probability of
tether. Parametric analysis will be also possible as well as
the selection of different models for the debris flux (OR-
DERM or MASTER). Software registering is planned at
the end of 2013.
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