Relativistic Hamiltonians are defined as the sum of relativistic one-body
kinetic energy, two- and three-body potentials and their boost corrections. In
this work we use the variational Monte Carlo method to study two kinds of
relativistic effects in the binding energy of 3H and 4He. The first is due to
the nonlocalities in the relativistic kinetic energy and relativistic one-pion
exchange potential (OPEP), and the second is from boost interaction. The OPEP
contribution is reduced by about 15% by the relativistic nonlocality, which may
also have significant effects on pion exchange currents. However, almost all of
this reduction is canceled by changes in the kinetic energy and other
interaction terms, and the total effect of the nonlocalities on the binding
energy is very small. The boost interactions, on the other hand, give repulsive
contributions of 0.4 (1.9) MeV in 3H (4He) and account for 37% of the
phenomenological part of the three-nucleon interaction needed in the
nonrelativistic Hamiltonians.Comment: 33 pages, RevTeX, 11 PostScript figures, submitted to Physical Review