81 research outputs found

    Screening of pair fluctuations in superconductors with coupled shallow and deep bands: a route to higher temperature superconductivity

    Full text link
    A combination of strong Cooper pairing and weak superconducting fluctuations is crucial to achieve and stabilize high-Tc superconductivity. We demonstrate that a coexistence of a shallow carrier band with strong pairing and a deep band with weak pairing, together with the Josephson-like pair transfer between the bands to couple the two condensates, realizes an optimal multicomponent superconductivity regime: it preserves strong pairing to generate large gaps and a very high critical temperature but screens the detrimental superconducting fluctuations, thereby suppressing the pseudogap state. Surprisingly, we find that the screening is very efficient even when the inter-band coupling is very small. Thus, a multi-band superconductor with a coherent mixture of condensates in the BCS regime (deep band) and in the BCS-BEC crossover regime (shallow band) offers a promising route to higher critical temperatures.Comment: 8 pages, 1 figure, including supplemental material

    Behavior of the flux-flow resistivity in mesoscopic superconductors

    Get PDF
    In this work we solved the time dependent Ginzburg-Landau equations numerically finding profiles of the flux-flow resistivity for different widths of superconducting stripes. We found vortex pinning induced by the surface superconductivity. This pinning avoids the movement of the vortex lattice preventing the generation of a voltage. We also found the existence of a mesoscopic region where the flux-flow resistivity shows size effects and we observed a transition to a macroscopic regime as the width increases.Fil: Sánchez Lotero, P.. Universidade Federal de Pernambuco; BrasilFil: Albino Aguiar, J.. Universidade Federal de Pernambuco; BrasilFil: Domínguez, Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (CAB). Grupo de Teoría de Sólidos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    Get PDF
    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.Comment: 5 pages, 4 figure

    Exchange narrowing of NMR line shapes in randomly diluted magnetic systems

    Get PDF
    An analysis of 19F NMR linewidths in the randomly diluted magnetic system KMnxMg1-xF3 is presented. It is shown that good agreement with measured linewidths can be obtained if in the usual asymptotic spin-diffusion assumption for the spin autocorrelation function 〈Siα(τ)Siα(0)〉avατ-d(x)/2, d(x) is taken to be independent of x above the percolation concentration. Experimental results in the system KNixMg1-xF3 are also presented. These data exhibit striking differences with the behavior of isostructural KMnxMg1-xF3 whose origin is discussed

    Vortices in superconducting strips: interplay between surface effects and the pinning landscape

    Full text link
    Vortices in a narrow superconducting strip with a square array of pinning sites are studied. The interactions of vortices with other vortices and with external sources (applied magnetic field and transport current) are calculated via a screened Coulomb model. The edge barrier is taken into account and shown to have an important role on the system dynamics. Numerical simulations in this approach show that the field dependent magnetic moment presents peaks corresponding to history dependent configurations of the vortex lattice. Some effects of the edge barrier on the I-V characteristics are also reported.Comment: 4 pages, 3 figure
    corecore