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Exchange narrowing of NMR line shapes in randomly diluted magnetic systems 

M. Engelsberg, J. Albino O. de Aguiar, Osiel F. de Alcantara Bonfim, and A. Franco, Jr. 
Departamento de Ffsica, Universidade Federal de Pernambuco, 50.000 Recife Pernambuco, Brasil 

(Received 13 May 1985) 

An analysis of 19F NMR linewidths in the randomly diluted magnetic system KMnxMg 1_xF3 is 
presented. It is shown that good agreement with measured linewidths can be obtained if in the usual 
asymptotic spin-diffusion assumption for the spin autocorrelation function 
(S; (T)S; (Ol}.vaT- d(xl/2, d(x) is taken to be independent of x above the percolation concentration. 

a a 

Experimental results in the system KNixMg1_xF3 are also presented. These data exhibit striking 
differences with the behavior of isostructural KMnxMg 1_xF3 whose origin is discussed . 

I. INTRODUCTION 

Considerable effort has been dedicated to the under­
standing of the effect of dimensionality upon the ex­
change narrowing of resonance lines. 1•2 In dense 
paramagnetic systems the NMR line shape is often dom­
inated by the combined effect of the hyperfine interaction 
and the strong exchange coupling between the electronic 
spins of the magl)etic ions. The rapid exchange-induced 
modulation of the local magnetic field experienced by the 
nuclei has a narrowing effect upon the NMR line shape 
which becomes sensitive to the long-time asymptotic 
behavior of the electronic-spin autocorrelation function. 
Various arguments3•

4 of quite general nature strongly sug­
gest that this asymptotic regime should be governed by 
spin diffusion. This would imply a strong dependence of 
the NMR linewidth upon the dimensionality of the mag­
netic system. In systems where the exchange coupling is 
predominantly along chains, for example, one expects ex­
change narrowing to be largely inhibited because of the 
important role of spin diffusion. A linewidth orders of 
magnitude larger than in tridimensional systems can be 
expected in this case, a prediction that appears to be borne 
out by some experimental observations. 1 

The spin-diffusion assumption leads to an electronic­
spin auto correlation function at the ith site of asymptotic 
form 

{Si (r)S; (0))o:r"'"a12 , 
a a 

where a =x, y, or z, and d is the Cartesian dimensionali­
ty. Of considerable interest is the generalization of this 
concept to the fractal geometry of percolating clusters. 
The possibility of describing the asymptoiic behavior of 
the spin autocorrelation function in a dilute Heisenberg 
magnet by what one may call an effective dimensionality 
d(x) varying smoothly with x, was first examined by 
Klenin and Blume.5 By means of computer simulations, 
these authors calculated the spin autocorrelation function 
at infinite temperature, for a Heisenberg magnet of classi­
cal spins. Quenched disorder was introduced by random 
substitution of a fraction 1-x of the magnetic ions by a 
nonmagnetic species. Although their calculations were 
limited to times shorter than 3 I J, where J is the nearest-
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neighbor exchange coupling, the results for x = 1 correct­
ly described the expected asymptotic behavior 

{S· (r)S· (a)) o::r-d(IJ/2 
1a 'a 

with d ( 1) = 3. As x decreased, d (x) appeared to decrease 
smoothly, but no quantitative statement could be made 
about a possible asymptotic behavior of form 

{S (r)S· (0)) rxr-d(xl/2 
'a 'a av 

for x < 1. 
The NMR measurements of Borsa and Jaccarino6 in the 

randomly diluted magnetic system KMnxMg1_xF3 are 
also quite revealing. In this cubic perovskite !;tructure 
three 19F NMR lines have been observed above the order­
ing temperature. They were assigned6 to fluorine nuclei 
having both of their nearest neighbors magnetic (! 2 ), hav­
ing only one magnetic nearest neighbor (f 1), or missing 
both magnetic nearest neighbors (I 0 ). The width of the 
l 0 resonance appears to be mainly determined by magnet­
ic dipole-dipole interactions of 19F nuclei with second­
nearest neighbors and more remote electronic s;>ins and 
also by dipolar interactions among nuclear spins. In con­
trast the 11 and 12 resonances in KMnxMg1_xF3 are 
predominantly broadened by a transferred hyperfine cou­
pling and narrowed by the exchange interaction among 
Mn2+ ions. As a consequence, the width of these lines be­
comes considerably larger with increasing magnetic dilu­
tion reflecting an average reduction of the exchange fre­
quency with decreasing x. In KMnxMg 1_xF3 the width 
of I 1 resonance is particularly interesting because it can 
be followed experimentally over a considerable range of 
concentrations.6 

The possibility of employing these NMR data in the 
range Xp <X < l, where xP denotes the percolation con­
centration, to test the conjecture of an effective dimen­
sionality d (x) varying smoothly with the concentration of 
magnetic ions, has been suggested by D' Ariano et al. 7 

These authors found that an extrapolation of the results 
of Ref. 5 together with the assumption 

(S. (r)S. (0)) o::r-d(x)/2 
la 'a av 

for long times, could be reconciled with the experimental-
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ly determined linewidth of the I 1 resonance in 
KMnxMg1-xF3. 

Our own analysis of these data which is presented in 
this paper does not support this interpretation. We con­
clude that if one assumes the asymptotic form proposed 
for the autocorrelation functions, the effective dimen­
sionality defined above can be taken to be independent of 
x, at least for ~ -xp ~ 0.1. We also report some new ex­
perimental NMR results in the randomly diluted magnet 
KNixMg1_xF3 which exhibit striking differences with the 
behavior of the isostructural compound KMnxMg1-xF3. 
A comparison between both systems suggests that a per­
colation model quite different from the conventional site­
dilution scheme, may be necessary to understand the 
behavior of KNixMg1-xF3. 

II. EXPERIMENT AL RES UL TS 

Figure l shows a 19F NMR spectrum in KNixMgi-xF3 
with x =0. 65 obtained at room temperature and at a fre­
quency of 20 MHz. The sample was a single crystal and 
the external magnetic field was parallel to a [ 100] crystal 
axis. The ordering temperature for this particular sample 
as determined by NMR was 67 K. Using a conventional 
continuous wave NMR spectrometer with peak-to-peak 
field modulation amplitudes of up to 20 G and also using 
pulsed NMR, spectra were recorded for samples with 
x =0. 9, 0.65, 0.35, 0.2, and 0.1 for various orientations of 
the crystals with respect to the external magnetic field. In 

KNixM91-xF3 

x •0.65 

!----< 
IOGauss 

KMnxM91-xF3 

x. 0 . 78 

lz 

lo 

FIG. I. (Top) 19F derivative NMR spectrum in 
KNixMg1_xF3 with x =0.65 obtained at room temperature and 
at a frequency v=20 MHz. (Bottom) typical F19 NMR spec­
trum at room temperature in KMnxMg 1_xF3 with x =0. 78 and 
v= 22 MHz, from the work of D' Ariano and Borsa (Ref. 8). 
The horizontal scales in both spectra do not coincide. 

all cases a single line was observed. From the concentra­
tion dependence of the amplitude of this resonance and 
from the negligible shift with respect to the 19F Larmor 
frequency it was identified as the 10 resonance. For com­
parison, Fig. 1 also shows a NMR spectrum in polycrys­
talline KMnxMg1_xF3 for x =0.75 obtained by D'Ariano 
et al. 8 which clearly displays all three 19F lines I 0 , I 1' 

and 12 • 

We conclude that in the concentration range of our ex­
periments, the I 2 and J 1 resonances are much broader in 
KNix.Mg1-xF3 than in isostructural KMnxMg1-xF3. Al­
though I 1 and I 2 lines of somewhat larger widths may be 
expected in KNixMg1_xF3 at room temperature, because 
the ordering takes place at higher temperatures than in 
KMnx Mg1 -x F3, we believe that this effect alone cannot 
explain the absence of these lines~ This conclusion is sup­
ported by the behavior with temperature of the linewidth 
of the I 1 and especially the I 2 resonance in 
KMnxMg1_xF3 which can be detected as close as 10-20 
K from the ordering temperature.8 Before attempting an 
explanation of our experimental results we present a line­
shape analysis with the aim of accounting for the concen­
tration dependence of the I I resonance line in 
KMnxMg1-xF3. 

III. LINE-SHAPE ANALYSIS 

Exchange narrowing of NMR line shapes in paramag­
netic systems can be conveniently treated within the 
framework of the Kubo-Tomita9 theory. The relaxation 
function </J(r) whose Fourier transform represents the line 
shape is given by 

</J(r)=exp [- J:(t-T)t/!(T)dr] , (1) 

where the correlation function for fluctuations in the local 
magnetic field experienced by the nuclei denoted by t/!( r ), 
can be shown 1 to have the general form 

, li 
t/!('.)=(1/N)~ ~ Qmm'ITR+6( l-ITR-6) 

R mm' 

(2) 

Given the cubic perovskite structure with lattice con­
stant a, the position of a fluorine nucleus is labeled by the 
index R in Eq. (2). For every fluorine position R, B 
denotes a vector of length a 12 joining this position with 
that of a nearest-neighbor magnetic ion. Thus B can point 
along any one of the three cubic axes. ITR+ll in Eq. (2) 
denotes the occupation number of the magnetic site at 
R+&, i.e., ITR+a= I if the site is occupied by a magnetic 
ion and IIR+6=0 otherwise. Q!m· is a quadratic expres­
sion in the components of the hyperfine tensor. For the 
fluorine sites selected by · the factor IIR+11(l - IIR-li) 
which are those contributing to the I 1 resonance, Q!m' 
can be assumed to be independent of R and to depend 
only upon the orientation of the vector B with respect to 
the external magnetic field. Moreover, 

N = ~ITR+6( 1-flR-li) 
R 

represents in Eq. (2) the total number of fluorine nuclei 
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contributing to the I 1 resonance. Other terms in Eq. (2) 
have the following meanings: 

SR+S,m = SR+s,x ± iSR+8,y 

form = ±1 and 

SR+S,m =SR+S,z 

for m =0; here SR+sCr) denotes the spin operator corre­
sponding to the magnetic ion at site R + S whose time 
dependence is governed by an isotropic exchange interac­
tion. The factor e immo may give rise to nonsecular 
broadening for m *O and originates in the noncommuta­
tivity between the hyperfine interaction and the electronic 
Zeeman energy. cu0 denotes the electroni.c angular preces­
sion frequency in the external magnetic field assumed to 
be parallel to the z axis. 

Since we are assuming for the fluorine nuclei contribut­
ing to the I 1 resonance a transferred hyperfine interaction 

with just a single magnetic nearest neighbor, only the au­
tocorrelation functions 

( SR+s,m(r)SR+8,m'(O)) 

are involved in Eq. (2) . . Correlations between electronic 
spins at different sites do not contribute to t/!( r ). 

Since 

( SR+s,m(r)SR+8,m' (0)) 

in Eq. (2) should be independent of the orientation of S, 
whereas Q!m· only depends on S and not on R, one can 
substitute for Q!m· the quantity Omm' given by 

- ( I )(Q6~ QSY Q8' ) 
Qmm ·= 3 mm' + mm'+ mm' · 

Furthermore, we find it essential for our analysis to 
separate the sum over R in Eq. (2) into a sum of sorted5 

correlation functions 

Gmm•(r,x)=( 1/N)~ (SR+S,m('r)SR+s,m•(O) )IIR+8( l-ITR-8) 
R 

5 
=( 1/Nl~ ~ (6-rl(S1';;(r)S1';;.(0))rrj'>. (3) 

I r=O 

In the right-hand side of Eq. (3) the sum runs over all magnetic sites in the simple-cubic lattice with lattice constant a . 
rr)'> is different from zero only if the site 1 is occupied by a magnetic ion having r nearest neighbors also occupied by 
magnetic ions. If rr)'l is different from zero, the factor 6- r with r=O, 1, ... , 5 counts the number of fluorine atoms 
hyperfine coupled to the magnetic ion at site I. 

Equation (3) can be written in a more useful form in terms of the sorted autocorrelation functions averaged over the 
whole sample (s:,;l(r)s;:}(O) )av· These are identical to those defined in Ref. 5. Noticing that the fractional number of 
fluorine atoms contributing to the I 1 resonance is 

~ 

./Y= ~ (6-r)6!x'(l-x) 6-' /r!(6-r)! 
r=O 

one obtains from Eq. (3) 

5 

Gmm•(rx) = (1 /./Y) ~ [6!(6-r)x'( l -x)6-r /r!(6-r)!](s;:l(r)s:,;1(0) )av . (4) 
r=O 

The sorted autocorrelation functions (S~l(r)S~l (O))av 
with a=x, y, or z are known from the computer experi­
ments of Klenin and Blume. 5 Their behavior is quite dif­
ferent for 0 ::=;r:::; l /JS(S + 1 ). At short times within this 
interval a much slower decay is observed for the smaller 
values of r. It is also observed that the sorted autocorrela­
tion functions are quite independent of the actual concen­
tration of magnetic ions. Furthermore, the decay of 
(s~>(7)S~>(O))av in the time interval considered appears 
to become more independent of r at longer times. This is 
not unreasonable because in this asymptotic region the 
sorted correlation functions are expected to reflect the 
configuration of the cluster far away from the initial ion 
and therefore to become insensitive to the actual values of 
r. 

We use the numerical values for the sorted autocorrela­
tion functions given in Ref. 5 for the longest time avail­
able r0 -1.3/JS (S + 1). Moreover, following the 
prescription of Gulley et al. 10 we write for T > r 0, 

( s;:\7)s:,;l(O) >av= (s;:\ 'To)s;:l(O) >air hol-d(x)/ 2 • (5) 

If d (x) were actually i~dependent of x and remained 
equal to d(1)=3, the only dependence of the Jinewidth 
upon concentration of magnetic ions ·would come from 
Eq. (4). This would yield the following expression for the 
linewidth oH (x ): 

s (S 1 ' > (~ )S(')(O)) 
&H(l) ~/(r)(x) a 

1 
0 a av 

r=O 3S (S +ll 
SH(x)=-----

5
-------

~f'>(x) 

where 

f'>(x)=6!x'(l - x)6-'/r!(6- r-1)! . 

The values adopted for 

( S~>(ro)S~1 (0)) avltS(S + 1) 

(6) 
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were 0.70, 0.42, 0.30, 0.23, and 0.17 for r = 1,2, ... , 5, 
respectively. Some of these values not explicitly given in 
Ref. 5 were obtained by interpolation. 

Figure 2 shows the experimental results of Borsa and 
Jaccarino6 in KMnxMg1_xF3 for the linewidth of the 11 
resonance together with the theoretical prediction based 
upon Eqs. (4)-(6). It appears that the assumption 
d(x)=d(l)=3 leads to very good agreement with the ex­
perimental results, at least for x -xP ~ 0.1. 

The role of the sorted autocorrelation functions 
(S~O)(r)S~O)(O) )av needs some special clarification. If one 
assumes a nonzero exchange interaction only between 
magnetic nearest neighbors, this autocorrelation function 
would not decay. Its actual decay would be governed by 
weak exchange couplings with next-nearest or even more 
remote neighbors. Although most magnetic sites with 
r=;i=O predominantly belong to the infinite cluster11 for 
x -xP ~ 0.1, the sites with r =0 are isolated and therefore 
are characterized by a completely different spin dynamics. 
Their role appears to be important in the spin-lattice re­
laxation process 12 of fluorine nuclei but not in the line 
shape, at least for the concentration range considered. 
The actual contribution of (S~0J( r)S~OJ (0)) av is difficult 
to calculate accurately, but an estimate assuming max­
imum influence would increase the value of 8H(x) calcu­
lated through Eq. (6) by about 10% in the region 
X -Xp~0.1. 

It is worth pointing out that, unlike other calculations,7 
the one leading to the theoretical curve shown in Fig. 2 
contains essentially no adjustable parameters or cutoffs to 
remove divergencies. The value 8H(l)=9.5 G was not 
explicitly calculated but was chosen6 as half the value of 
the linewidth in pure KMnF3. Since this width can be ac­
counted to a good approximation by the known values of 
the hyperfine coupling and exchange interaction using the 
same line-shape analysis outlined above, 10 the agreement 
can be considered quite satisfactory. 

IV. DISCUSSION 

From the results shown in Fig. 2 it is apparent that the 
variation in linewidth observed in KMnxMg1_xF3 can be 

30f l 
"' 

I "' => 

" "' I 

~20 
0 

I 
'O 

10 

0.8 0.6 0.4 0.2 0.0 x 

FIG. 2. Extrapolated zero-field linewidths of the / 1 
19F reso­

nance in KMnxMg 1_xF3, from the work of Borsa and Jaccarino 
(Ref. 6). The solid line was calculated from Eq. (6) of the text. 

entirely accounted for by the concentration dependence of 
the weights given to the amplitudes of the sorted auto­
correlation functions without any change in the effective 
dimensionality, at least in the concentration range 
x -xP ~ 0. 1. This conclusion is in contradiction with ear­
lier suggestions. 7•

8 In the critical region 0 <X -xP < 0.1, 
the existing data are not sufficiently reliable but may indi­
cate a larger width than predicted by Eqs. (4)-(6). This 
may imply a smaller value of d in this region. If the con­
jecture of Alexander and Orbach 13• 14 could be extended 
also to spin diffusion in a percolating cluster, one would 
actually expect the fraction dimensionality d ~ + to sub­
stitute d in Eq. (5). This would lead to a much larger 
width at percolation than predicted by Eqs, (4)-(6). 

In view of the previous analysis, the behavior of 
KNixMg1_xF3 is quite intriguing. Because of the com­
paratively large exchange constant, the linewidth in 
pure15•16 KNiF3 [and also BH(l)] is actually smaller than 
in KMnF3. The other factors that enter into Eq. (6) are 
mainly dependent upon the crystal structure which is 
identical in both systems. The failure to observe the l 1 
and 12 resonances in KNixMg1_xF3, is, therefore, some­
what puzzling. There exists some evidence17 that a dif­
ferent percolation model may be necessary to interpret the 
experimental results in KNixMg1_xF3. One should notice 
that the analysis leading to Eq. (6) relies on the specifica­
tion of what configuration of atoms actually constitutes a 
cluster of exchange coupled magnetic ions. In the model 
assumed to be valid for KMnxMg1_xF3, two magnetic 
ions at nearest-neighboring sites are considered to belong 
to the same cluster independently of the occupancy of 
other neighboring sites. For a simple-cubic lattice this 
yields a percolation concentration11 xP =0.311 which ap­
pears to be in agreement with the experimental results in 
KMnxMg1_xF3. For Ni2+ the situation may be entirely 
different. Since the ground state of this ion is 3F, slight 
distortions from octahedral symmetry resulting from in­
complete substitution of all six nearest-neighboring mag­
netic ions by nonmagnetic atoms can have a much larger 
effect than in Mn2+, which has a half-filled shell with 
L =0. Although the electronic wave function at the 
ligands may not significantly vary by this process leaving 
the transferred hyperfine interaction unchanged, the wave 
function at the magnetic ion may be altered sufficiently in 
the case of Ni2+ to affect the exchange coupling with a 
neighboring ion. These arguments suggest that a more 
realistic model for KNixMg1_xF3 might result if one as­
sumes that the exchange coupling between two nearest­
neighboring Ni2+ ions depends upori the occupancy of 
other neighboring sites. Since quantitative calculations of 
superexchange are quite difficult, we decided to test a 
simple model based upon the following assumption: Two 
nearest-neighboring magnetic ions are considered as 
members of the same magnetic cluster only if their own 
nearest neighbors, along the line joining the two ions but 
in opposite directions, are also magnetic. We have per­
formed preliminary Monte-Carlo simulations using this 
model, as well as, improved mean-field calculations. The 
percolation concentration, for example, appears to be con­
siderably larger for this model than for conventional per­
colation. For a square lattice we obtained xP =0. 73 in-
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stead of the value Xp =0.593 valid for conventional site­
dilution percolation in a square lattice. 11 ·It is worth 
pointing out that the variation of ordering temperature 
with concentration of magnetic ions, determined by NMR 
in KNixMg1_xF3, 17 actually displays a tendency towards 
a larger value of xP with an apparent crossover at the 
lower temperatures. In addition to predicting a higher 
percolation concentration, the model outlined above 
would have the effect of increasing, in Eq. (6), the weight 
of sorted autocorrelation functions (S~) ('T )S~ ' (Ol)av with 
smaller values of r . This would also lead to larger 
linewidths in KNixMg1-xF3 than in KMnxMg1-xF3 for 
the same value of x and could probably also explain other 
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