2,211 research outputs found

    Warm Molecular Layers in Protoplanetary Disks

    Get PDF
    We have investigated molecular distributions in protoplanetary disks, adopting a disk model with a temperature gradient in the vertical direction. The model produces sufficiently high abundances of gaseous CO and HCO+ to account for line observations of T Tauri stars using a sticking probability of unity and without assuming any non-thermal desorption. In regions of radius R > 10 AU, with which we are concerned, the temperature increases with increasing height from the midplane. In a warm intermediate layer, there are significant amounts of gaseous molecules owing to thermal desorption and efficient shielding of ultraviolet radiation by the flared disk. The column densities of HCN, CN, CS, H2CO, HNC and HCO+ obtained from our model are in good agreement with the observations of DM Tau, but are smaller than those of LkCa15. Molecular line profiles from our disk models are calculated using a 2-dimensional non-local-thermal-equilibrium (NLTE) molecular-line radiative transfer code for a direct comparison with observations. Deuterated species are included in our chemical model. The molecular D/H ratios in the model are in reasonable agreement with those observed in protoplanetary disks.Comment: 11 pages, Latex (aa.cls), to be published in Astronomy and Astrophysic

    Effects of accretion flow on the chemical structure in the inner regions of protoplanetary disks

    Get PDF
    We have studied the dependence of the profiles of molecular abundances and line emission on the accretion flow in the hot (\ga 100K) inner region of protoplanetary disks. The gas-phase reactions initiated by evaporation of the ice mantle on dust grains are calculated along the accretion flow. We focus on methanol, a molecule that is formed predominantly through the evaporation of warm ice mantles, to show how the abundance profile and line emission depend on the accretion flow. Our results show that some evaporated molecules keep high abundances only when the accretion velocity is large enough, and that methanol could be useful as a diagnostic of the accretion flow by means of ALMA observations at the disk radius of \la 10AU.Comment: 6 pages, 5 figures, Accepted for publication in A&

    Modeling Molecular-Line Emission from Circumstellar Disks

    Full text link
    Molecular lines hold valuable information on the physical and chemical composition of disks around young stars, the likely progenitors of planetary systems. This invited contribution discusses techniques to calculate the molecular emission (and absorption) line spectrum based on models for the physical and chemical structure of protoplanetary disks. Four examples of recent research illutrate these techniques in practice: matching resolved molecular-line emission from the disk around LkCa15 with theoertical models for the chemistry; evaluating the two-dimensional transfer of ultraviolet radiation into the disk, and the effect on the HCN/CN ratio; far-infrared CO line emission from a superheated disk surface layer; and inward motions in the disk around L1489 IRS.Comment: 6 pages, no figures. To appear in "The Dense Interstellar Medium in Galaxies", Procs. Fourth Cologne-Bonn-Zermatt-Symposiu

    Cyclotron Resonance Study of the Two-Dimensional Electron Layers and Double-Layers in Tilted Magnetic Fields

    Full text link
    The far-infrared absorption in two-dimensional electron layers subject to magnetic field of general orientation was studied theoretically. The Kubo formula is employed to derive diagonal components of the magneto-conductivity tensor of two-dimensional electron single-layers and double-layers. The parabolic quantum well is used to model a simple single-layer system. Both single-layer and double-layer systems can be realized in a pair of tunnel-coupled, strictly two-dimensional quantum wells. Obtained results are compared to experimental data.Comment: 4 pages, 6 figures, elsart/PHYEAUTH macros; presented on the EP2DS-15 Conference in Nara, Japan. To be published in Physica

    Observation of the Fano-Kondo Anti-Resonance in a Quantum Wire with a Side-Coupled Quantum Dot

    Full text link
    We have observed the Fano-Kondo anti-resonance in a quantum wire with a side-coupled quantum dot. In a weak coupling regime, dips due to the Fano effect appeared. As the coupling strength increased, conductance in the regions between the dips decreased alternately. From the temperature dependence and the response to the magnetic field, we conclude that the conductance reduction is due to the Fano-Kondo anti-resonance. At a Kondo valley with the Fano parameter q0q\approx 0, the phase shift is locked to π/2\pi/2 against the gate voltage when the system is close to the unitary limit in agreement with theoretical predictions by Gerland {\it et al.} [Phys. Rev. Lett. {\bf 84}, 3710 (2000)].Comment: 4 pages, 4 figure

    Direct evaporative cooling of 41K into a Bose-Einstein condensate

    Full text link
    We have investigated the collisional properties of 41K atoms at ultracold temperature. To show the possibility to use 41K as a coolant, a Bose-Einstein condensate of 41K atoms in the stretched state (F=2, m_F=2) was created for the first time by direct evaporation in a magnetic trap. An upper bound of three body loss coefficient for atoms in the condensate was determined to be 4(2) 10^{-29} cm -6 s-1. A Feshbach resonance in the F=1, m_F=-1 state was observed at 51.42(5) G, which is in good agreement with theoretical prediction.Comment: 4 pages, 4 figure

    Line Emission from Gas in Optically Thick Dust Disks around Young Stars

    Full text link
    We present self-consistent models of gas in optically-thick dusty disks and calculate its thermal, density and chemical structure. The models focus on an accurate treatment of the upper layers where line emission originates, and at radii 0.7\gtrsim 0.7 AU. We present results of disks around 1M\sim 1{\rm M}_{\odot} stars where we have varied dust properties, X-ray luminosities and UV luminosities. We separately treat gas and dust thermal balance, and calculate line luminosities at infrared and sub-millimeter wavelengths from all transitions originating in the predominantly neutral gas that lies below the ionized surface of the disk. We find that the [ArII] 7μ\mum, [NeII] 12.8μ\mum, [FeI] 24μ\mum, [SI] 25μ\mum, [FeII] 26μ\mum, [SiII] 35 μ\mum, [OI] 63μ\mum and pure rotational lines of H2_2, H2_2O and CO can be quite strong and are good indicators of the presence and distribution of gas in disks. We apply our models to the disk around the nearby young star, TW Hya, and find good agreement between our model calculations and observations. We also predict strong emission lines from the TW Hya disk that are likely to be detected by future facilities. A comparison of CO observations with our models suggests that the gas disk around TW Hya may be truncated to 120\sim 120 AU, compared to its dust disk of 174 AU. We speculate that photoevaporation due to the strong stellar FUV field from TW Hya is responsible for the gas disk truncation.Comment: Accepted to Astrophysical Journa

    Resolving the chemistry in the disk of TW Hydrae I. Deuterated species

    Get PDF
    We present Submillimeter Array (SMA) observations of several deuterated species in the disk around the classical T Tauri star TW Hydrae at arcsecond scales, including detections of the DCN J=3-2 and DCO+ J=3-2 lines, and upper limits to the HDO 3(1,2)-2(2,1), ortho-H2D+ 1(1,0)-1(1,1) and para-D2H+ 1(1,0)-1(0,1) transitions. We also present observations of the HCN J=3-2, HCO+ J=3-2 and H13CO+ J=4-3 lines for comparison with their deuterated isotopologues. We constrain the radial and vertical distributions of various species in the disk by fitting the data using a model where the molecular emission from an irradiated accretion disk is sampled with a 2D Monte Carlo radiative transfer code. We find that the distribution of DCO+ differs markedly from that of HCO+. The D/H ratios inferred change by at least one order of magnitude (0.01 to 0.1) for radii 70 AU and there is a rapid falloff of the abundance of DCO+ at radii larger than 90 AU. Using a simple analytical chemical model, we constrain the degree of ionization, x(e-)=n(e-)/n(H2), to be ~10^-7 in the disk layer(s) where these molecules are present. Provided the distribution of DCN follows that of HCN, the ratio of DCN to HCN is determined to be 1.7\pm0.5 \times 10^-2; however, this ratio is very sensitive to the poorly constrained vertical distribution of HCN. The resolved radial distribution of DCO+ indicates that {\it in situ} deuterium fractionation remains active within the TW Hydrae disk and must be considered in the molecular evolution of circumstellar accretion disks.Comment: 12 pages, 12 figures, accepted to Ap

    Narrow-line magneto-optical trap for erbium

    Full text link
    We report on the experimental realization of a robust and efficient magneto-optical trap for erbium atoms, based on a narrow cooling transition at 583nm. We observe up to N=2×108N=2 \times 10^{8} atoms at a temperature of about T=15μKT=15 \mu K. This simple scheme provides better starting conditions for direct loading of dipole traps as compared to approaches based on the strong cooling transition alone, or on a combination of a strong and a narrow kHz transition. Our results on Er point to a general, simple and efficient approach to laser cool samples of other lanthanide atoms (Ho, Dy, and Tm) for the production of quantum-degenerate samples
    corecore