73 research outputs found

    An analysis of C.difficile Environmental Contamination During and Following Treatment for C.difficile Infection

    Get PDF
    Background: Lower Clostridium difficile spore counts in feces from C difficile infection (CDI) patients treated with fidaxomicin versus vancomycin have been observed. We aimed to determine whether environmental contamination is lower in patients treated with fidaxomicin compared with those treated with vancomycin/metronidazole. Methods: The CDI cases were recruited at 4 UK hospitals (Leeds, Bradford, and London [2 centers]). Environmental samples (5 room sites) were taken pretreatment and at 2–3, 4–5, 6–8, and 9–12 days of treatment, end of treatment (EOT), and post-EOT. Fecal samples were collected at diagnosis and as often as produced thereafter. Swabs/feces were cultured for C difficile; percentage of C difficile-positive samples and C difficile bioburden were compared between different treatment arms at each time point. Results: Pre-EOT (n = 244), there was a significant reduction in environmental contamination (≥1 site positive) around fidaxomicin versus vancomycin/metronidazole recipients at days 4–5 (30% vs 50% recipients, P = .04) and at days 9–12 (22% vs 49%, P = .005). This trend was consistently seen at all other timepoints, but it was not statistically significant. No differences were seen between treatment groups post-EOT (n = 76). Fidaxomicin-associated fecal positivity rates and colony counts were consistently lower than those for vancomycin/metronidazole from days 4 to 5 of treatment (including post-EOT); however, the only significant difference was in positivity rate at days 9–12 (15% vs 55%, P = .03). Conclusions: There were significant reductions in C difficile recovery from both feces and the environment around fidaxomicin versus vancomycin/metronidazole recipients. Therefore, fidaxomicin treatment may lower the C difficile transmission risk by reducing excretion and environmental contamination

    'Antibiotic footprint' as a communication tool to aid reduction of antibiotic consumption-authors' response

    Get PDF
    We thank Dominic Moran for describing the potential implications of our proposed antibiotic footprint and how the ecological footprint was originally defined.1 The ‘antibiotic footprint’ has been designed as a simple metric focusing on communication with the general public, healthcare professionals and policy makers to aid reduction of antibiotic consumptio

    The impact of the introduction of fidaxomicin on the management of Clostridium difficile infection in seven NHS secondary care hospitals in England: a series of local service evaluations.

    Get PDF
    Clostridium difficile infection (CDI) is associated with high mortality. Reducing incidence is a priority for patients, clinicians, the National Health Service (NHS) and Public Health England alike. In June 2012, fidaxomicin (FDX) was launched for the treatment of adults with CDI. The objective of this evaluation was to collect robust real-world data to understand the effectiveness of FDX in routine practice. In seven hospitals introducing FDX between July 2012 and July 2013, data were collected retrospectively from medical records on CDI episodes occurring 12 months before/after the introduction of FDX. All hospitalised patients aged ≥18 years with primary CDI (diarrhoea with presence of toxin A/B without a previous CDI in the previous 3 months) were included. Recurrence was defined as in-patient diarrhoea re-emergence requiring treatment any time within 3 months after the first episode. Each hospital had a different protocol for the use of FDX. In hospitals A and B, where FDX was used first line for all primary and recurrent episodes, the recurrence rate reduced from 10.6 % to 3.1 % and from 16.3 % to 3.1 %, with a significant difference in 28-day mortality from 18.2 % to 3.1 % (p < 0.05) and 17.3 % to 6.3 % (p < 0.05) for hospitals A and B, respectively. In hospitals using FDX in selected patients only, the changes in recurrence rates and mortality were less marked. The pattern of adoption of FDX appears to affect its impact on CDI outcome, with maximum reduction in recurrence and all-cause mortality where it is used as first-line treatment

    Intra- and Interspecies Genomic Transfer of the Enterococcus faecalis Pathogenicity Island

    Get PDF
    Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI) of 153 kb containing several virulence factors including the enterococcal surface protein (esp). Until now only internal fragments of the PAI or larger chromosomal regions containing it have been transfered. Here we demonstrate precise excision, circularization and horizontal transfer of the entire PAI element from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb) contained some deletions and insertions as compared to the PAI of the reference strain MMH594, transferred precisely and integrated site-specifically into the chromosome of E. faecalis (intergenic region) and Enterococcus faecium (tRNAlys). The internal PAI structure was maintained after transfer. We assessed phenotypic changes accompanying acquisition of the PAI and expression of some of its determinants. The esp gene is expressed on the surface of donor and both transconjugants. Biofilm formation and cytolytic activity were enhanced in E. faecalis transconjugants after acquisition of the PAI. No differences in pathogenicity of E. faecalis were detected using a mouse bacteraemia and a mouse peritonitis models (tail vein and intraperitoneal injection). A 66 kb conjugative pheromone-responsive plasmid encoding erm(B) (pLG2) that was transferred in parallel with the PAI was sequenced. pLG2 is a pheromone responsive plasmid that probably promotes the PAI horizontal transfer, encodes antibiotic resistance features and contains complete replication and conjugation modules of enterococcal origin in a mosaic-like composition. The E. faecalis PAI can undergo precise intra- and interspecies transfer probably with the help of conjugative elements like conjugative resistance plasmids, supporting the role of horizontal gene transfer and antibiotic selective pressure in the successful establishment of certain enterococci as nosocomial pathogens

    Oral versus intravenous antibiotics for bone and joint infections: the OVIVA non-inferiority RCT

    Get PDF
    Background Management of bone and joint infection commonly includes 4–6 weeks of intravenous (IV) antibiotics, but there is little evidence to suggest that oral (PO) therapy results in worse outcomes. Objective To determine whether or not PO antibiotics are non-inferior to IV antibiotics in treating bone and joint infection. Design Parallel-group, randomised (1 : 1), open-label, non-inferiority trial. The non-inferiority margin was 7.5%. Setting Twenty-six NHS hospitals. Participants Adults with a clinical diagnosis of bone, joint or orthopaedic metalware-associated infection who would ordinarily receive at least 6 weeks of antibiotics, and who had received ≤ 7 days of IV therapy from definitive surgery (or start of planned curative treatment in patients managed non-operatively). Interventions Participants were centrally computer-randomised to PO or IV antibiotics to complete the first 6 weeks of therapy. Follow-on PO therapy was permitted in either arm. Main outcome measure The primary outcome was the proportion of participants experiencing treatment failure within 1 year. An associated cost-effectiveness evaluation assessed health resource use and quality-of-life data. Results Out of 1054 participants (527 in each arm), end-point data were available for 1015 (96.30%) participants. Treatment failure was identified in 141 out of 1015 (13.89%) participants: 74 out of 506 (14.62%) and 67 out of 509 (13.16%) of those participants randomised to IV and PO therapy, respectively. In the intention-to-treat analysis, using multiple imputation to include all participants, the imputed risk difference between PO and IV therapy for definitive treatment failure was –1.38% (90% confidence interval –4.94% to 2.19%), thus meeting the non-inferiority criterion. A complete-case analysis, a per-protocol analysis and sensitivity analyses for missing data each confirmed this result. With the exception of IV catheter complications [49/523 (9.37%) in the IV arm vs. 5/523 (0.96%) in the PO arm)], there was no significant difference between the two arms in the incidence of serious adverse events. PO therapy was highly cost-effective, yielding a saving of £2740 per patient without any significant difference in quality-adjusted life-years between the two arms of the trial. Limitations The OVIVA (Oral Versus IntraVenous Antibiotics) trial was an open-label trial, but bias was limited by assessing all potential end points by a blinded adjudication committee. The population was heterogenous, which facilitated generalisability but limited the statistical power of subgroup analyses. Participants were only followed up for 1 year so differences in late recurrence cannot be excluded. Conclusions PO antibiotic therapy is non-inferior to IV therapy when used during the first 6 weeks in the treatment for bone and joint infection, as assessed by definitive treatment failure within 1 year of randomisation. These findings challenge the current standard of care and provide an opportunity to realise significant benefits for patients, antimicrobial stewardship and the health economy. Future work Further work is required to define the optimal total duration of therapy for bone and joint infection in the context of specific surgical interventions. Currently, wide variation in clinical practice suggests significant redundancy that likely contributes to the excess and unnecessary use of antibiotics. Trial registration Current Controlled Trials ISRCTN91566927. Funding This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 38. See the NIHR Journals Library website for further project information

    Procalcitonin evaluation of antibiotic use in COVID-19 hospitalised patients (PEACH): protocol for a retrospective observational study

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although COVID-19 is a viral illness, many patients admitted to hospital are prescribed antibiotics, based on concerns that COVID-19 patients may experience secondary bacterial infections, and the assumption that they may respond well to antibiotic therapy. This has led to an increase in antibiotic use for some hospitalised patients at a time when accumulating antibiotic resistance is a major global threat to health. Procalcitonin (PCT) is an inflammatory marker measured in blood samples and widely recommended to help diagnose bacterial infections and guide antibiotic treatment. The PEACH study will compare patient outcomes from English and Welsh hospitals that used PCT testing during the first wave of the COVID-19 pandemic with those from hospitals not using PCT. It will help to determine whether, and how, PCT testing should be used in the NHS in future waves of COVID-19 to protect patients from antibiotic overuse. PEACH is a retrospective observational cohort study using patient-level clinical data from acute hospital Trusts and Health Boards in England and Wales. The primary objective is to measure the difference in antibiotic use between COVID-19 patients who did or did not have PCT testing at the time of diagnosis. Secondary objectives include measuring differences in length of stay, mortality, intensive care unit admission, and resistant bacterial infections between these groups

    Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration

    Get PDF
    PURPOSE OF REVIEW: A major cause of visual disorders is dysfunction and/or loss of the light-sensitive cells of the retina, the photoreceptors. To develop better treatments for patients, we need to understand how inherited retinal disease mutations result in the dysfunction of photoreceptors. New advances in the field of stem cell and gene editing research offer novel ways to model retinal dystrophies in vitro and present opportunities to translate basic biological insights into therapies. This brief review will discuss some of the issues that should be taken into account when carrying out disease modelling and gene editing of retinal cells. We will discuss (i) the use of human induced pluripotent stem cells (iPSCs) for disease modelling and cell therapy; (ii) the importance of using isogenic iPSC lines as controls; (iii) CRISPR/Cas9 gene editing of iPSCs; and (iv) in vivo gene editing using AAV vectors.RECENT FINDINGS: Ground-breaking advances in differentiation of iPSCs into retinal organoids and methods to derive mature light sensitive photoreceptors from iPSCs. Furthermore, single AAV systems for in vivo gene editing have been developed which makes retinal in vivo gene editing therapy a real prospect.SUMMARY: Genome editing is becoming a valuable tool for disease modelling and in vivo gene editing in the retina.</p

    <i>C9ORF72</i> repeat expansion causes vulnerability of motor neurons to Ca<sup>2+</sup>-permeable AMPA receptor-mediated excitotoxicity

    Get PDF
    Funded by The Wellcome Trust (Grant 092742/Z/10/Z), MNDA (Miles/Oct14/878-792), MRC, Euan MacDonald Centre, UK DRI, DBT-India, ISSF (WT/UoE), Royal Society of Edinburgh (CRF), and Biogen/UoE Joint Discovery Research Collaboration. RNA-Seq raw reads were generated by Edinburgh Genomics, The University of Edinburgh. Edinburgh Genomics is partly supported through core grants from NERC (R8/H10/56), MRC (MR/K001744/1), and BBSRC (BB/J004243/1).Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-seq and electrophysiological studies on induced pluripotent stem cell (iPSC) derived motor neuron (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS.Publisher PDFPeer reviewe

    Addressing the Challenges of Penicillin Allergy Delabeling With Electronic Health Records and Mobile Applications

    No full text
    Allergy labels are common, often incorrect, and potentially harmful. There are many opportunities for clinical decision support (CDS) tools integrated in the electronic health record (EHR) and mobile apps to address the challenges with drug allergy management, including penicillin allergy delabeling (PADL). Effective delabeling solutions must consider multidisciplinary clinical workflow and multistep processes, including documentation, assessment, plan (eg, allergy testing and referral), record update, drug allergy alert management, and allergy reconciliation over time. Developing a systematic infrastructure to manage allergies across the EHR is critical to improve the accuracy and completeness of a patient’s allergy and avoid inadvertently relabeling. Improving the appropriateness and relevancy of drug allergy alerts is important to reduce alert fatigue. Using alerts to guide clinicians on appropriate antibiotic use may reduce unnecessary β-lactam avoidance. To date, EHR CDS tools have facilitated non-allergists to provide PADL at the point of care. A mobile app was shown to support PADL and provide specialist support and education. Future research is needed to standardize, integrate, and evaluate innovative CDS tools in the EHR to demonstrate patient safety and clinical utility and facilitate wider adoption
    corecore