389 research outputs found

    Cross-section measurement of the Ba 130 (p,γ) La 131 reaction for γ -process nucleosynthesis

    Get PDF
    Background: Deviations between experimental data of charged-particle-induced reactions and calculations within the statistical model are frequently found. An extended data base is needed to address the uncertainties regarding the nuclear-physics input parameters in order to understand the nucleosynthesis of the neutron-deficient p nuclei. Purpose: A measurement of total cross-section values of the Ba130(p,γ)La131 reaction at low proton energies allows a stringent test of statistical model predictions with different proton+nucleus optical model potentials. Since no experimental data are available for proton-capture reactions in this mass region around A ≈130, this measurement can be an important input to test the global applicability of proton+nucleus optical model potentials. Method: The total reaction cross-section values were measured by means of the activation method. After the irradiation with protons, the reaction yield was determined by use of γ-ray spectroscopy using two clover-type high-purity germanium detectors. In total, cross-section values for eight different proton energies could be determined in the energy range between 3.6 MeV ≤Ep≤ 5.0 MeV, thus, inside the astrophysically relevant energy region. Results: The measured cross-section values were compared to Hauser-Feshbach calculations using the statistical model codes TALYS and SMARAGD with different proton+nucleus optical model potentials. With the semimicroscopic JLM proton+nucleus optical model potential used in the SMARAGD code, the absolute cross-section values are reproduced well, but the energy dependence is too steep at the lowest energies. The best description is given by a TALYS calculation using the semimicroscopic Bauge proton+nucleus optical model potential using a constant renormalization factor. Conclusions: The statistical model calculation using the Bauge semimicroscopic proton+nucleus optical model potential deviates by a constant factor of 2.1 from the experimental data. Using this model, an experimentally supported stellar reaction rate for proton capture on the p nucleus Ba130 was calculated. At astrophysical temperatures, an increase in the stellar reaction rate of 68% compared to rates obtained from the widely used NON-SMOKER code is found. This measurement extends the scarce experimental data base for charged-particle-induced reactions, which can be helpful to derive a more globally applicable proton+nucleus optical model potential.Peer reviewedFinal Accepted Versio

    Experimental cross sections of Ho 165 (α,n) Tm 168 and Er 166 (α,n) Yb 169 for optical potential studies relevant for the astrophysical γ process

    Get PDF
    Background: Optical potentials are crucial ingredients for the prediction of nuclear reaction rates needed in simulations of the astrophysical γ process. Associated uncertainties are particularly large for reactions involving α particles. This includes (γ,α) reactions which are of special importance in the γ process. Purpose: The measurement of (α,n) reactions allows for an optimization of currently used α-nucleus potentials. The reactions Ho165(α,n) and Er166(α,n) probe the optical model in a mass region where γ process calculations exhibit an underproduction of p nuclei which is not yet understood. Method: To investigate the energy-dependent cross sections of the reactions Ho165(α,n) and Er166(α,n) close to the reaction threshold, self-supporting metallic foils were irradiated with α particles using the FN tandem Van de Graaff accelerator at the University of Notre Dame. The induced activity was determined afterwards by monitoring the specific β-decay channels. Results: Hauser-Feshbach predictions with a widely used global α potential describe the data well at energies where the cross sections are almost exclusively sensitive to the α widths. Increasing discrepancies appear towards the reaction threshold at lower energy. Conclusions: The tested global α potential is suitable at energies above 14 MeV, while a modification seems necessary close to the reaction threshold. Since the γ and neutron widths show non-negligible impact on the predictions, complementary data are required to judge whether or not the discrepancies found can be solely assigned to the α width. © 2014 American Physical Society.Peer reviewedFinal Accepted Versio

    Fragmentation and systematics of the Pygmy Dipole Resonance in the stable N=82 isotones

    Full text link
    The low-lying electric dipole (E1) strength in the semi-magic nucleus 136Xe has been measured which finalizes the systematic survey to investigate the so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with the method of nuclear resonance fluorescence using real photons in the entrance channel. In all cases, a fragmented resonance-like structure of E1 strength is observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation of the strength reveals that the degree of fragmentation decreases towards the proton-deficient isotones while the total integrated strength increases indicating a dependence of the total strength on the neutron-to-proton ratio. The experimental results are compared to microscopic calculations within the quasi-particle phonon model (QPM). The calculation includes complex configurations of up to three phonons and is able to reproduce also the fragmentation of the E1 strength which allows to draw conclusions on the damping of the PDR. Calculations and experimental data are in good agreement in the degree of fragmentation and also in the integrated strength if the sensitivity limit of the experiments is taken into account

    Investigation of alpha-nuclear potential families from elastic scattering experiments

    Get PDF
    In this work we present the continuation of the reported analysis [1] of the experimentally measured angular distributions of the reaction Cd-106(alpha, alpha)Cd-106 at several different energies around the Coulomb barrier. The difficulties that arise in the study of Cd-106-alpha-nuclear potential and the so called Family Problem are addressed

    Isospin Character of the Pygmy Dipole Resonance in 124Sn

    Full text link
    The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,a'g) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states which is excited in (a,a'g) as well as in (g,g') reactions and a group of states at higher energies which is only excited in (g,g') reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance

    Investigation of photoneutron reactions close to and above the neutron emission threshold in the rare earth region

    Full text link
    We have investigated the photoneutron cross section of the isotopes 148,150^{148,150}Nd, 154^{154}Sm, and 154,160^{154,160}Gd close to the neutron emission threshold in photoactivation experiments at the Darmstadt superconducting electron linear accelerator S-DALINAC. Naturally composed targets were activated with a high-intensity bremsstrahlung beam at various energies and the reaction yields have been determined by measuring the activity of the produced radioactive isotopes with HPGe detectors. The results are compared to two different statistical model calculations.Comment: Accepted for publication in Physical Review

    Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    Get PDF
    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum

    The electric dipole response of 76^{76}Se above 4 MeV

    Get PDF
    The dipole response of 3476^{76}_{34}Se in the energy range 4 to 9 MeV has been analyzed using a (γ⃗,γ′)(\vec\gamma,{\gamma}') polarized photon scattering technique, performed at the High Intensity γ\gamma-Ray Source facility, to complement previous work performed using unpolarized photons. The results of this work offer both an enhanced sensitivity scan of the dipole response and an unambiguous determination of the parities of the observed J=1 states. The dipole response is found to be dominated by E1E1 excitations, and can reasonably be attributed to a pygmy dipole resonance. Evidence is presented to suggest that a significant amount of directly unobserved excitation strength is present in the region, due to unobserved branching transitions in the decays of resonantly excited states. The dipole response of the region is underestimated when considering only ground state decay branches. We investigate the electric dipole response theoretically, performing calculations in a 3D cartesian-basis time-dependent Skyrme-Hartree-Fock framework.Comment: 20 pages, 18 figures, to be submitted to PR
    • …
    corecore