6,301 research outputs found

    The Einstein-Boltzmann Relation for Thermodynamic and Hydrodynamic Fluctuations

    Full text link
    When making the connection between the thermodynamics of irreversible processes and the theory of stochastic processes through the fluctuation-dissipation theorem, it is necessary to invoke a postulate of the Einstein-Boltzmann type. For convective processes hydrodynamic fluctuations must be included, the velocity is a dynamical variable and although the entropy cannot depend directly on the velocity, ÎŽ2S\delta^{2} S will depend on velocity variations. Some authors do not include velocity variations in ÎŽ2S\delta^{2} S, and so have to introduce a non-thermodynamic function which replaces the entropy and does depend on the velocity. At first sight, it seems that the introduction of such a function requires a generalisation of the Einstein-Boltzmann relation to be invoked. We review the reason why it is not necessary to introduce such a function, and therefore why there is no need to generalise the Einstein-Boltzmann relation in this way. We then obtain the fluctuation-dissipation theorem which shows some differences as compared with the non-convective case. We also show that ÎŽ2S\delta^{2} S is a Liapunov function when it includes velocity fluctuations.Comment: 13 Page

    Quantifying non-Gaussianity for quantum information

    Get PDF
    We address the quantification of non-Gaussianity of states and operations in continuous-variable systems and its use in quantum information. We start by illustrating in details the properties and the relationships of two recently proposed measures of non-Gaussianity based on the Hilbert-Schmidt (HS) distance and the quantum relative entropy (QRE) between the state under examination and a reference Gaussian state. We then evaluate the non-Gaussianities of several families of non-Gaussian quantum states and show that the two measures have the same basic properties and also share the same qualitative behaviour on most of the examples taken into account. However, we also show that they introduce a different relation of order, i.e. they are not strictly monotone each other. We exploit the non-Gaussianity measures for states in order to introduce a measure of non-Gaussianity for quantum operations, to assess Gaussification and de-Gaussification protocols, and to investigate in details the role played by non-Gaussianity in entanglement distillation protocols. Besides, we exploit the QRE-based non-Gaussianity measure to provide new insight on the extremality of Gaussian states for some entropic quantities such as conditional entropy, mutual information and the Holevo bound. We also deal with parameter estimation and present a theorem connecting the QRE nonG to the quantum Fisher information. Finally, since evaluation of the QRE nonG measure requires the knowledge of the full density matrix, we derive some {\em experimentally friendly} lower bounds to nonG for some class of states and by considering the possibility to perform on the states only certain efficient or inefficient measurements.Comment: 22 pages, 13 figures, comments welcome. v2: typos corrected and references added. v3: minor corrections (more similar to published version

    Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes

    Get PDF
    In this paper we present the solution to the problem of optimally discriminating among quantum states, i.e., identifying the states with maximum probability of success when a certain fixed rate of inconclusive answers is allowed. By varying the inconclusive rate, the scheme optimally interpolates between Unambiguous and Minimum Error discrimination, the two standard approaches to quantum state discrimination. We introduce a very general method that enables us to obtain the solution in a wide range of cases and give a complete characterization of the minimum discrimination error as a function of the rate of inconclusive answers. A critical value of this rate is identified that coincides with the minimum failure probability in the cases where unambiguous discrimination is possible and provides a natural generalization of it when states cannot be unambiguously discriminated. The method is illustrated on two explicit examples: discrimination of two pure states with arbitrary prior probabilities and discrimination of trine states

    Cloning of Gaussian states by linear optics

    Full text link
    We analyze in details a scheme for cloning of Gaussian states based on linear optical components and homodyne detection recently demonstrated by U. L. Andersen et al. [PRL 94 240503 (2005)]. The input-output fidelity is evaluated for a generic (pure or mixed) Gaussian state taking into account the effect of non-unit quantum efficiency and unbalanced mode-mixing. In addition, since in most quantum information protocols the covariance matrix of the set of input states is not perfectly known, we evaluate the average cloning fidelity for classes of Gaussian states with the degree of squeezing and the number of thermal photons being only partially known.Comment: 8 pages, 7 figure

    The Seven Sisters DANCe III: Projected spatial distribution

    Full text link
    Methods. We compute Bayesian evidences and Bayes Factors for a set of variations of the classical radial models by King (1962), Elson et al. (1987) and Lauer et al. (1995). The variations incorporate different degrees of model freedom and complexity, amongst which we include biaxial (elliptical) symmetry, and luminosity segregation. As a by-product of the model comparison, we obtain posterior distributions and maximum a posteriori estimates for each set of model parameters. Results. We find that the model comparison results depend on the spatial extent of the region used for the analysis. For a circle of 11.5 parsecs around the cluster centre (the most homogeneous and complete region), we find no compelling reason to abandon Kings model, although the Generalised King model, introduced in this work, has slightly better fitting properties. Furthermore, we find strong evidence against radially symmetric models when compared to the elliptic extensions. Finally, we find that including mass segregation in the form of luminosity segregation in the J band, is strongly supported in all our models. Conclusions. We have put the question of the projected spatial distribution of the Pleiades cluster on a solid probabilistic framework, and inferred its properties using the most exhaustive and least contaminated list of Pleiades candidate members available to date. Our results suggest however that this sample may still lack about 20% of the expected number of cluster members. Therefore, this study should be revised when the completeness and homogeneity of the data can be extended beyond the 11.5 parsecs limit. Such study will allow a more precise determination of the Pleiades spatial distribution, its tidal radius, ellipticity, number of objects and total mass.Comment: 39 pages, 31 figure
    • 

    corecore