141 research outputs found

    Survey of Whole House Programs in Midwestern Climates

    Get PDF
    Existing single family whole home energy efficiency programs in cold weather climates, focused on the Midwest, were analyzed in detail to understand program design, including requirements, processes, incentives and outcomes, focusing on savings and participation. The report presents information about specific programs, aggregated program trends and observations, and recommendations for future cold weather climate whole home program design and implementation. This study makes several recommendations to whole home program designers and implementers on improving the cost-effectiveness and reach of whole home programs

    Experimental evaluation of laser cutting of bone

    Get PDF
    Abstract In this paper cutting of bone with an Er:YAG laser is described. The thermal effects during cutting and the surface profile obtained are discussed

    Glocal integrity in 420 stainless steel by asynchronous laser processing

    Get PDF
    Cold working individual layers during additive manufacturing (AM) by mechanical surface treatments, such as peening, effectively “prints” an aggregate surface integrity that is referred to as a glocal (i.e., local with global implications) integrity. Printing a complex, pre-designed glocal integrity throughout the build volume is a feasible approach to improve functional performance while mitigating distortion. However, coupling peening with AM introduces new manufacturing challenges, namely thermal cancellation, whereby heat relaxes favorable residual stresses and work hardening when printing on a peened layer. Thus, this work investigates glocal integrity formation from cyclically coupling LENS® with laser peening on 420 stainless steel

    Modelling spatial and inter-annual variations of nitrous oxide emissions from UK cropland and grasslands using DailyDayCent

    Get PDF
    This work contributes to the Defra funded projects AC0116: ‘Improving the nitrous oxide inventory’, and AC0114: ‘Data Synthesis, Management and Modelling’. Funding for this work was provided by the UK Department for Environment, Food and Rural Affairs (Defra) AC0116 and AC0114, the Department of Agriculture, Environment and Rural Affairs for Northern Ireland, the Scottish Government and the Welsh Government. Rothamsted Research receives strategic funding from the Biotechnology and Biological Sciences Research Council. This study also contributes to the projects: N-Circle (BB/N013484/1), U-GRASS (NE/M016900/1) and GREENHOUSE (NE/K002589/1).Peer reviewedPublisher PD

    Design of a pulse power supply unit for micro-ECM

    Get PDF
    Electrochemical micro-machining (μECM) requires a particular pulse power supply unit (PSU) to be developed in order to achieve desired machining performance. This paper summarises the development of a pulse PSU meeting the requirements of μECM. The pulse power supply provides tens of nanosecond pulse duration, positive and negative bias voltages and a polarity switching functionality. It fulfils the needs for tool preparation with reversed pulsed ECM on the machine. Moreover, the PSU is equipped with an ultrafast overcurrent protection which prevents the tool electrode from being damaged in case of short circuits. The developed pulse PSU was used to fabricate micro-tools out of 170 μm WC-Co alloy shafts via micro-electrochemical turning and drill deep holes via μECM in a disk made of 18NiCr6. The electrolyte used for both processes was a mixture of sulphuric acid and NaNO3 aqueous solutions.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMP-ICT-FoF-285614

    Design of an electrochemical micromachining machine

    Get PDF
    Electrochemical micromachining (μECM) is a non-conventional machining process based on the phenomenon of electrolysis. μECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMPICT- FoF-285614)

    Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands

    Get PDF
    Publication History: Accepted - 8th January 2019; Published Online - 9th January 2019; Published - 15th April 2019Intensification of grasslands is necessary to meet the increasing demand of livestock products. The application of nitrogen (N) on grasslands affects the N balance therefore the nitrogen use efficiency (NUE). Emissions of nitrous oxide (N2O) are produced due to N fertilisation and low NUE. These emissions depend on the type and rates of N applied. In this study we have compiled data from 5 UK N fertilised grassland sites (Crichton, Drayton, North Wyke, Hillsborough and Pwllpeiran) covering a range of soil types and climates. The experiments evaluated the effect of increasing rates of inorganic N fertiliser provided as ammonium nitrate (AN) or calcium ammonium nitrate (CAN). The following fertiliser strategies were also explored for a rate of 320 kg N ha−1: using the nitrification inhibitor dicyandiamide (DCD), changing to urea as an N source and splitting fertiliser applications. We measured N2O emissions for a full year in each experiment, as well as soil mineral N, climate data, pasture yield and N offtake. N2O emissions were greater at Crichton and North Wyke whereas Drayton, Hillsborough and Pwllpeiran had the smallest emissions. The resulting average emission factor (EF) of 1.12% total N applied showed a range of values for all the sites between 0.6 and 2.08%. NUE depended on the site and for an application rate of 320 kg N ha−1, N surplus was on average higher than 80 kg N ha−1, which is proposed as a maximum by the EU Nitrogen Expert Panel. N2O emissions tended to be lower when urea was applied instead of AN or CAN, and were particularly reduced when using urea with DCD. Finally, correlations between the factors studied showed that total N input was related to Nofftake and Nexcess; while cumulative emissions and EF were related to yield scaled emissions

    Transitory electrochemical masking for precision jet processing techniques

    Get PDF
    Electrochemical jet processing techniques provide an efficient method for large area surface structuring and micro-milling, where the metallurgy of the near-surface is assured and not adversely affected by thermal loading. Here, doped electrolytes are specifically developed for jet techniques to exploit the Gaussian energy distribution as found in energy beam processes. This allows up to 26% reduction in dissolution kerf and enhancements of the defined precision metric of up to 284% when compared to standard electrolytes. This is achieved through the filtering of low energy at discrete points within the energy distribution curve. Two fundamental mechanisms of current filtering and refresh rate are proposed and investigated in order to underpin the performance enhancements found using this methodology. This study aims to demonstrate that a step change in process fidelity and flexibility can be achieved through optimisation of the electrochemistry specific to jet processes

    Constitutively Activated NLRP3 Inflammasome Causes Inflammation and Abnormal Skeletal Development in Mice

    Get PDF
    The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID). While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3). NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue “spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling
    corecore