1,285 research outputs found

    The height dependence of temperature - velocity correlation in the solar photosphere

    Full text link
    We derive correlation coefficients between temperature and line-of-sight velocity as a function of optical depth throughout the solar photosphere for the non-magnetic photosphere and a small area of enhanced magnetic activity. The maximum anticorrelation of about -0.6 between temperature and line-of-sight velocity in the non-magnetic photosphere occurs at log tau5 = -0.4. The magnetic field is another decorrelating factor along with 5-min oscillations and seeing.Comment: In press,"Modern Solar Facilities - Advanced Solar Science", (Gottingen), Universitatsverlag Gottingen, 139-142, 200

    Spectral Characteristics of the He I D3 Line in a Quiescent Prominence Observed by THEMIS

    Full text link
    We analyze the observations of a quiescent prominence acquired by the Telescope Heliographique pour l'Etude du Magnetisme et des Instabilites Solaires (THEMIS) in the He I 5876 A (He I D3) multiplet aiming to measure the spectral characteristics of the He I D3 profiles and to find for them an adequate fitting model. The component characteristics of the He I D3 Stokes I profiles are measured by the fitting system approximating them with a double Gaussian. This model yields an He I D3 component peak intensity ratio of 5.5±0.45.5\pm0.4, which differs from the value of 8 expected in the optically thin limit. Most of the measured Doppler velocities lie in the interval ±5\pm5 km/s, with a standard deviation of ±1.7\pm1.7 km/s around the peak value of 0.4 km/s. The wide distribution of the full-width at half maximum has two maxima at 0.25 A and 0.30 A for the He I D3 blue component and two maxima at 0.22 A and 0.31 A for the red component. The width ratio of the components is 1.04±0.181.04\pm0.18. We show that the double-Gaussian model systematically underestimates the blue wing intensities. To solve this problem, we invoke a two-temperature multi-Gaussian model, consisting of two double-Gaussians, which provides a better representation of He I D3 that is free of the wing intensity deficit. This model suggests temperatures of 11.5 kK and 91 kK, respectively, for the cool and the hot component of the target prominence. The cool and hot components of a typical He I D3 profile have component peak intensity ratios of 6.6 and 8, implying a prominence geometrical width of 17 Mm and an optical thickness of 0.3 for the cool component, while the optical thickness of the hot component is negligible. These prominence parameters seem to be realistic, suggesting the physical adequacy of the multi-Gaussian model with important implications for interpreting He I D3 spectropolarimetry by current inversion codes.Comment: 25 pages,1 movie, 10 figures, 2 tables, 2 equations. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-017-1118-z The supplementary movie is available for viewing and download at https://www.dropbox.com/s/7tskvnc593tlbyv/Prominence_HeID3_GONG_AIA.mpg?dl=

    How Noisy Data Affects Geometric Semantic Genetic Programming

    Full text link
    Noise is a consequence of acquiring and pre-processing data from the environment, and shows fluctuations from different sources---e.g., from sensors, signal processing technology or even human error. As a machine learning technique, Genetic Programming (GP) is not immune to this problem, which the field has frequently addressed. Recently, Geometric Semantic Genetic Programming (GSGP), a semantic-aware branch of GP, has shown robustness and high generalization capability. Researchers believe these characteristics may be associated with a lower sensibility to noisy data. However, there is no systematic study on this matter. This paper performs a deep analysis of the GSGP performance over the presence of noise. Using 15 synthetic datasets where noise can be controlled, we added different ratios of noise to the data and compared the results obtained with those of a canonical GP. The results show that, as we increase the percentage of noisy instances, the generalization performance degradation is more pronounced in GSGP than GP. However, in general, GSGP is more robust to noise than GP in the presence of up to 10% of noise, and presents no statistical difference for values higher than that in the test bed.Comment: 8 pages, In proceedings of Genetic and Evolutionary Computation Conference (GECCO 2017), Berlin, German

    Up-dating the Cholodny method using PET films to sample microbial communities in soil

    Get PDF
    The aim of this work was to investigate the use of PET (polyethylene terephtalate) films as a modern development of Cholodny’s glass slides, to enable microscopy and molecular-based analysis of soil communities where spatial detail at the scale of microbial habitats is essential to understand microbial associations and interactions in this complex environment. Methods. Classical microbiological methods; attachment assay; surface tension measurements; molecular techniques: DNA extraction, PCR; confocal laser scanning microscopy (CLSM); micro- focus X-ray computed tomography (μCT). Results. We first show, using the model soil and rhizosphere bacteria Pseudomonas fluorescens SBW25 and P. putida KT2440, that bacteria are able to attach and detach from PET films, and that pre-conditioning with a filtered soil suspension improved the levels of attachment. Bacteria attached to the films were viable and could develop substantial biofilms. PET films buried in soil were rapidly colonised by microorganisms which could be investigated by CLSM and recovered onto agar plates. Secondly, we demonstrate that μCT can be used to non-destructively visualise soil aggregate contact points and pore spaces across the surface of PET films buried in soil. Conclusions. PET films are a successful development of Cholodny’s glass slides and can be used to sample soil communities in which bacterial adherence, growth, biofilm and community development can be investigated. The use of these films with μCT imaging in soil will enable a better understanding of soil micro-habitats and the spatially-explicit nature of microbial interactions in this complex environment

    Magnetic loop emergence within a granule

    Full text link
    We investigate the temporal evolution of magnetic flux emerging within a granule in the quiet-Sun internetwork at disk center. We combined IR spectropolarimetry performed in two Fe I lines at 1565 nm with speckle-reconstructed G-band imaging. We determined the magnetic field parameters by a LTE inversion of the full Stokes vector using the SIR code, and followed their evolution in time. To interpret the observations, we created a geometrical model of a rising loop in 3D. The relevant parameters of the loop were matched to the observations where possible. We then synthesized spectra from the 3D model for a comparison to the observations. We found signatures of magnetic flux emergence within a growing granule. In the early phases, a horizontal magnetic field with a distinct linear polarization signal dominated the emerging flux. Later on, two patches of opposite circular polarization signal appeared symmetrically on either side of the linear polarization patch, indicating a small loop-like structure. The mean magnetic flux density of this loop was roughly 450 G, with a total magnetic flux of around 3x10^17 Mx. During the ~12 min episode of loop occurrence, the spatial extent of the loop increased from about 1 to 2 arcsec. The middle part of the appearing feature was blueshifted during its occurrence, supporting the scenario of an emerging loop. The temporal evolution of the observed spectra is reproduced to first order by the spectra derived from the geometrical model. The observed event can be explained as a case of flux emergence in the shape of a small-scale loop.Comment: 10 pages, 13 figures; accepted for Astronomy and Astrophysics; ps and eps figures in full resolution are available at http://www.astro.sk/~koza/figures/aa2009_loop

    Monolithic InP-Based Grating Spectrometer for Wavelength-Division Multiplexed Systems at 1.5 μm

    Get PDF
    A monolithic InP-based grating spectrometer for use in wavelength-division multiplexed systems at 1.5 μm is reported. The spectrometer uses a single etched reflective focusing diffraction grating and resolves >50 channels at 1 nm spacing with a ~0.3nm channel width and at least 19dB channel isolation. Operation is essentially of the state of the input polarisation

    Asymptotic expansion for reversible A + B <-> C reaction-diffusion process

    Full text link
    We study long-time properties of reversible reaction-diffusion systems of type A + B C by means of perturbation expansion in powers of 1/t (inverse of time). For the case of equal diffusion coefficients we present exact formulas for the asymptotic forms of reactant concentrations and a complete, recursive expression for an arbitrary term of the expansions. Taking an appropriate limit we show that by studying reversible reactions one can obtain "singular" solutions typical of irreversible reactions.Comment: 6 pages, no figures, to appear in PR
    corecore