12,572 research outputs found

    Problems in J times B plasma acceleration Semiannual progress report

    Get PDF
    Shock tube accelerator, heat transfer gauge, homopolar accelerator theory, and transport effects in boundary layers in plasma

    Air pollution from aircraft

    Get PDF
    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included

    Self heating and nonlinear current-voltage characteristics in bilayer graphene

    Get PDF
    We demonstrate by experiments and numerical simulations that the low-temperature current-voltage characteristics in diffusive bilayer graphene (BLG) exhibit a strong superlinearity at finite bias voltages. The superlinearity is weakly dependent on doping and on the length of the graphene sample. This effect can be understood as a result of Joule heating. It is stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG is more sensitive to temperature due to the higher density of electronic states at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.

    Quantum dynamics of a dc-SQUID coupled to an asymmetric Cooper pair transistor

    Full text link
    We present a theoretical analysis of the quantum dynamics of a superconducting circuit based on a highly asymmetric Cooper pair transistor (ACPT) in parallel to a dc-SQUID. Starting from the full Hamiltonian we show that the circuit can be modeled as a charge qubit (ACPT) coupled to an anharmonic oscillator (dc-SQUID). Depending on the anharmonicity of the SQUID, the Hamiltonian can be reduced either to one that describes two coupled qubits or to the Jaynes-Cummings Hamiltonian. Here the dc-SQUID can be viewed as a tunable micron-size resonator. The coupling term, which is a combination of a capacitive and a Josephson coupling between the two qubits, can be tuned from the very strong- to the zero-coupling regimes. It describes very precisely the tunable coupling strength measured in this circuit and explains the 'quantronium' as well as the adiabatic quantum transfer read-out.Comment: 20 page

    Decoherence processes in a current biased dc SQUID

    Full text link
    A current bias dc SQUID behaves as an anharmonic quantum oscillator controlled by a bias current and an applied magnetic flux. We consider here its two level limit consisting of the two lower energy states | 0 \right> and | 1 \right>. We have measured energy relaxation times and microwave absorption for different bias currents and fluxes in the low microwave power limit. Decoherence times are extracted. The low frequency flux and current noise have been measured independently by analyzing the probability of current switching from the superconducting to the finite voltage state, as a function of applied flux. The high frequency part of the current noise is derived from the electromagnetic environment of the circuit. The decoherence of this quantum circuit can be fully accounted by these current and flux noise sources.Comment: 4 pages, 4 figure

    Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt

    Full text link
    We calculate the effect of scattering on the static, exchange enhanced, spin susceptibility and show that in particular spin orbit scattering leads to a reduction of the giant moments and spin glass freezing temperature due to dilute magnetic impurities. The harmful spin fluctuation contribution to the intra-grain pairing interaction is strongly reduced opening the way for BCS superconductivity. We are thus able to explain the superconducting and magnetic properties recently observed in granular Pt as due to scattering effects in single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter

    Nanosecond quantum state detection in a current biased dc SQUID

    Full text link
    This article presents our procedure to measure the quantum state of a dc SQUID within a few nanoseconds, using an adiabatic dc flux pulse. Detection of the ground state is governed by standard macroscopic quantum theory (MQT), with a small correction due to residual noise in the bias current. In the two level limit, where the SQUID constitutes a phase qubit, an observed contrast of 0.54 indicates a significant loss in contrast compared to the MQT prediction. It is attributed to spurious depolarization (loss of excited state occupancy) during the leading edge of the adiabatic flux measurement pulse. We give a simple phenomenological relaxation model which is able to predict the observed contrast of multilevel Rabi oscillations for various microwave amplitudes.Comment: 10 pages, 8 figure

    Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling

    Get PDF
    We have studied electronic conductivity and shot noise of bilayer graphene (BLG) sheets at high bias voltages and low bath temperature T0=4.2T_0=4.2 K. As a function of bias, we find initially an increase of the differential conductivity, which we attribute to self-heating. At higher bias, the conductivity saturates and even decreases due to backscattering from optical phonons. The electron-phonon interactions are also responsible for the decay of the Fano factor at bias voltages V>0.1V>0.1 V. The high bias electronic temperature has been calculated from shot noise measurements, and it goes up to 1200\sim1200 K at V=0.75V=0.75 V. Using the theoretical temperature dependence of BLG conductivity, we extract an effective electron-optical phonon scattering time τeop\tau_{e-op}. In a 230 nm long BLG sample of mobility μ=3600\mu=3600 cm2^2V1^{-1}s1^{-1}, we find that τeop\tau_{e-op} decreases with increasing voltage and is close to the charged impurity scattering time τimp=60\tau_{imp}=60 fs at V=0.6V=0.6 V.Comment: 7 pages, 7 figures. Extended version of the high bias part of version 1. The low bias part is discussed in arXiv:1102.065

    Fluorescent visualization of a spreading surfactant

    Full text link
    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally-resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently-tagged surfactant. We find that the leading edge of spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration which trails the leading edge, and a flat, monolayer-scale spreading film which differs from concentration profiles predicted by current models. Both the Marangoni ridge and surfactant leading edge can be described to spread as RtδR \propto t^{\delta}. We find spreading exponents, δH0.30\delta_H \approx 0.30 and δΓ0.22\delta_\Gamma \approx 0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of δ=1/4\delta = 1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge

    Energy relaxation in graphene and its measurement with supercurrent

    Get PDF
    We study inelastic energy relaxation in graphene for low energies to find out how electrons scatter with acoustic phonons and other electrons. By coupling the graphene to superconductors, we create a strong dependence of the measured signal, i.e.,\ critical Josephson current, on the electron population on different energy states. Since the relative population of high- and low-energy states is determined by the inelastic scattering processes, the critical current becomes an effective probe for their strength. We argue that the electron-electron interaction is the dominant relaxation method and, in our model of two-dimensional electron-electron scattering, we find a scattering time τee=5...13\tau_{e-e}=5... 13 ps at T=500 mK, 1-2 orders of magnitude smaller than predicted by theory.Comment: 10 pages, 13 figures submitted to Physical Review
    corecore