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Energy relaxation in graphene and its measurement with supercurrent

J. Voutilainen, A. Fay, P. Häkkinen, J. K. Viljas, T. T. Heikkilä, and P. J. Hakonen
Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

(Received 16 March 2011; published 11 July 2011)

We study inelastic energy relaxation in graphene for low energies to find out how electrons scatter with acoustic
phonons and other electrons. By coupling the graphene to superconductors, we create a strong dependence of
the measured signal, i.e., critical Josephson current, on the electron population on different energy states. Since
the relative population of high- and low-energy states is determined by the inelastic scattering processes, the
critical current becomes an effective probe for their strength. We argue that the electron-electron interaction is
the dominant relaxation method and we estimate a scattering time τe−e = 0.1 . . . 1 ps at T = 500 mK, 1-2 orders
of magnitude smaller than predicted for normal two-dimensional diffusive systems.

DOI: 10.1103/PhysRevB.84.045419 PACS number(s): 72.80.Vp, 74.45.+c, 72.15.Lh

I. INTRODUCTION

The special electronic structure of graphene shows up in
its electronic properties.1,2 Most attention has been paid to
the electronic conductivity3 which, due to the strong energy
dependence of the density of states, can be tuned significantly
with a gate voltage. For dirty graphene, this gate dependence
is furthermore modified by elastic scattering4 due to potential
inhomogeneities forming charge puddles. At high voltages,
also inelastic scattering due to optical phonons appears,5 but
the low-energy inelastic scattering due to electron-electron
(e-e) (Refs. 6 and 7) or electron-acoustic phonon scattering
(e-ph)8,9 does not directly influence the conductivity because
the mean free paths for them are typically larger than the elastic
mean free path.1,3

In this paper we study the effect of low-energy inelastic
scattering in graphene by using Josephson critical current
measurements to determine heat transport in the system. The
idea is to apply a heater voltage and to measure the increased
temperature via nearby thermometers. The measurement is
performed at sub-K temperatures and low voltages, thereby
providing access to low-energy inelastic scattering processes
and allowing us to disregard scattering from optical phonons.
To perform the measurement we use three superconducting
electrodes fabricated on graphene. Two of them (thermometer
electrodes, C and R in Fig. 1) lie close to each other, so that we
can measure a finite supercurrent through them, and the third
one (heater electrode, L in Fig. 1) is used for heating the sys-
tem. The supercurrent is sensitive to the electron temperature
or, more accurately, to the electron distribution function on the
graphene region between the superconductors,10 and therefore
acts as an electron thermometer.

We make two measurements: First we measure the super-
current as a function of temperature, and thus calibrate the
thermometer and find parameters for a microscopic theory
describing the supercurrent in the junction. Second, we apply a
voltage to the heater electrode, supplying heat into the electron
system, and measure again the supercurrent in the presence of
the heater voltage. The magnitude of the supercurrent in the
presence of the heater voltage is sensitive to the strength of
inelastic relaxation inside graphene, allowing us to measure it.

The Joule heat generated in the presence of a bias voltage
is dissipated either to the electrodes or to phonons.8,9,11

However, since the electron-acoustic phonon coupling is so

weak in graphene, most of the heat escapes into the electrodes,
even though this process is blocked at low energies by the
superconducting gap �. The escape is possible as a result
of processes transferring excitations from low energies to
above the gap, in particular multiple Andreev reflections12

and e-e scattering. The former tends to broaden the electron
distribution below the gap and thus to increase the effective
temperature at these energies, while the latter drives the
distribution toward a quasiequilibrium (Fermi function) form
having a lower effective temperature. Our thermometer is
most sensitive to the distribution at energies below �, and
therefore it is a sensitive probe of the e-e scattering strength in
graphene. But to extract the magnitude of the e-e scattering we
have to abandon the simple effective temperature description
used, for example, in Ref. 13 and rather solve a full kinetic
Boltzmann equation, with e-e scattering included explicitly
with a collision integral.

This paper is organized as follows: In Sec. II, we describe
the experimental setup used to carry out the measurements. In
Sec. III, we formulate our theoretical model and consider the
different sources of inelastic relaxation. In Sec. IV we combine
the theoretical and experimental results to provide an estimate
for the strength of relaxation in the system. Finally, we discuss
the implications of these results in Sec. V.

II. EXPERIMENT

An optical image of the studied monolayer graphene sample
is shown in Fig. 1(a). The 2.8-μm-long and 4.0-μm-wide
graphene area in between leads L and R is partially interrupted
by a 1.0-μm-wide lead C. This latter lead is 1.7 μm and
0.4 μm far from leads L and R, respectively, with all the
distances measured between the leads’ internal edges. The
graphene flake has been exfoliated with a semiconductor wafer
dicing tape and deposited on top of a 250-nm-thick SiO2

layer. The oxide isolates the graphene flake from a highly
p-doped Si substrate used as a back gate in our experiments.
Three Ti/Al (10 nm/50 nm) metallic contacts were patterned
by using standard electron-beam lithography techniques, and
evaporated in ultrahigh vacuum. A 10−10-mbar vacuum during
the metal evaporation guarantees highly transparent contacts,
which are needed to observe proximity-induced supercurrents.
The sample was measured at low temperatures, down to
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FIG. 1. (Color online) (a) Optical image of the studied graphene
flake with three Ti/Al electrodes marked L, C, and R. The contour of
the flake is highlighted by a a dashed line. (b) Differential resistance
of the long (L-C) and short (C-R) sections as a function of gate
voltage at T = 4 K.

80 mK, in a dry dilution cryostat BF-SD250 from Bluefors.
The sample contacts are electrically connected to room-
temperature electronics via 1-m-long thermocoaxes, low-pass
RC filters (cutoff frequency of 1 kHz) and 1-m twisted pairs,
protecting the sample from the room-temperature electrical
noise. Below the critical temperature of ∼600 mK, the Ti/Al
leads become superconducting, resulting in the formation
of three different superconductor-graphene-superconductor
(SGS) junctions.

Figure 1(b) shows the gate voltage (Vg) dependence of
the differential resistance (Rd ) of the graphene sections L-C,
C-R, and of the whole flake (L-R), at 4 K. The entire section
L-R presents a peak in Rd at a gate voltage VCNP = −11 V.
This resistance peak is associated with a minimum charge-
carrier density and takes place at the charge neutrality point
(CNP). The negative value of VCNP indicates that the flake
is n doped in the absence of gate voltage. The change in
the resistance is smaller in the p-doped region than in the
n-doped one. This asymmetry comes from the n doping
by the Ti/Al leads14–16 and the resulting formation of p-n
junctions when bulk of the graphene is p doped by the gate
for Vg < VCNP. For Vg > VCNP, we estimate from the Drude
model a mobility of 3500 cm2 V−1 s−1 and a mean-free-path
of 70 nm at Vg = 30 V. The electrical transport through the
studied sections is therefore diffusive. The resistance RN of the
short section (C-R) is continuously decreasing with Vg and no
resistance peak is observed within the investigated gate voltage
range. The short section is thus always n doped. This is because
the contacts affect the sample on a scale of μm so that the
average doping in the short section is stronger.

We now focus on the current-voltage (IV ) characteristics
of the long and short sections measured at 80 mK for different
gate voltages. The IV curves generally contain a supercurrent
branch characterized by a zero-voltage state when the bias
current is kept below the critical current Ic (see Fig. 2). At
Ic, the SGS junction jumps into the resistive state. The initial
superconducting state is recovered when the current is biased
below the so-called retrapping current Ir . For the short sample,
at 80 mK, Ir always differ from Ic leading to a hysteretic IV

curve. The critical current Ic depends on the gate voltage and
decreases when the normal resistance increases as seen in
Fig. 1. When the gate voltage is tuned from −30 to 30 V, the

FIG. 2. (Color online) Current-voltage characteristic of the short
section C-R at Vg = −30 V obtained by successively sweeping up
(blue curve) and down (red curve) the bias current at 80 mK. The
SGS junction jumps from the zero-voltage state into the resistive
state at the critical current Ic and comes back into its initial state at
the retrapping current Ir . Inset: IV curve of the short section C-R at
Vg = 30 V and T = 80 mK.

critical current increases from 47 to 120 nA and the normal
resistance is lowered from 708 to 337 �, respectively.

Figure 3 shows the current-voltage characteristics of the
sections L-C and L-R at Vg = −3.4 V. Both IV curves
present a supercurrent branch with the same critical current
of 16 nA, and identical differential resistance values (650 �)
at sufficiently low bias. This is understood by the presence of a
supercurrent through the short section (C-R) keeping leads C

and R at the same potential. The transition of the short sample
into the resistive state is identified by a second voltage jump.
This jump takes place at a critical current of 156 nA for the
section L-C and 104 nA for the section L-R. The differential

FIG. 3. (Color online) IV curves of sections L-R and L-C at Vg =
−3.4 V and T = 80 mK. Three voltage transitions are highlighted by
the arrows.
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FIG. 4. (Color online) Temperature dependence of the critical
(solid line) and retrapping (dashed line) currents at Vg = −3.4 V.
Inset: Current-voltage characteristic of the short section C-R at Vg =
−3.4 V for different temperatures. The current is swept up from −120
to 120 nA.

resistances increase to 685 and 810 � for sections L-C and
L-R, respectively.

The IV characteristics of our SGS junctions are strongly
changing with temperature. Figure 4 shows the temperature
dependence of the IV curve of the short section (C-R) at
Vg = −3.4 V. The critical current decreases with increasing the
temperature. The retrapping current remains almost constant
until 0.3 K and then goes down. The hysteresis of the IV curve
is reduced as the temperature goes up and disappears at 0.45 K.
Similar results are found at different gate voltages, and also
in the long section L-C. The temperature dependence of the
critical current is used in Sec. IV to extract the charge-carrier
mean free path. From the shape of this dependence we can
already tell that we are in the long junction regime, where the
length of the junction L is longer than the superconducting
coherence length ξ . Most importantly, the strong temperature
dependence of the critical current allows us to use SGS
junctions as electronic thermometers.

Keeping the bath temperature at 80 mK, the electronic
temperature can be changed by injecting a dissipative current in
between leads L and C. As shown in Fig. 5 for Vg = −3.4 V,
the critical current decreases in the short section (C-R) as
the voltage VL-C across the long section L-C goes up. The
retrapping current remains initially almost constant at low
voltages and decreases at around 0.15 mV. By assuming
that the electronic distribution follows a Fermi distribution,
we can directly relate the critical current to the electronic
temperature. We find that the temperature amounts to around
0.52 K at VL-C = 0.35 mV. However, as we show in Sec. III,
the electronic distribution function may differ from a Fermi
distribution, in which case the electronic temperature is not
properly defined. Consequently, the electronic temperature
directly deduced from the measurement of Ic is only an
effective temperature [see Eq. (5) below].

FIG. 5. (Color online) Critical (circle points) and retrapping
(cross points) currents as a function of the voltage VL-C across
the section L-C. The triangle points corresponds to the deduced
electronic temperature.

III. THEORETICAL MODEL

We compose a model where a graphene flake is divided
into two parts by superconducting electrodes with energy gaps
� and treat the system as effectively one-dimensional with
the essential dimension aligned along the x direction. This
setup is illustrated in Fig. 6 where the two distinct regions are
numbered as 1 and 2.

A. Distribution function and supercurrent

Physical observables, such as the supercurrent, can now
be determined from the electron distribution function f (ε),
which is a function of both energy ε and position x, although
below the latter is not explicitly written down. The distribution

Region
    1

S

S

S
G

Region
    2

L

C

R

FIG. 6. (Color online) Sketch of the model with graphene flake
divided into two regions: the heater (region 1) and thermometer
(region 2). The relative sizes of the regions are determined from
critical-current measurements as explained in the text.
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function satisfies the time-independent diffusion equation
(disregarding the proximity effect)

−D
∂2f (ε)

∂x2
= I [f (ε)]. (1)

Here D is the diffusion constant, related to the Fermi velocity
vF = 106 m/s and the transport relaxation time τ for elastic
scattering by

D = v2
F τ/2, (2)

and I (f ) is the collision integral for the inelastic processes
in the flake (most importantly e-e and e-ph scattering). At
the graphene-superconductor interfaces we have two kinds of
boundary conditions depending on whether we are at the end
points x = 0 and x = L or at the boundary of regions 1 and 2,
at x = xc. At the end points17

f (ε) = fL/R(ε), |ε| > �, (3a)

f (ε) = 1 − f (ε), |ε| < �, (3b)

∂xf (ε) = ∂xf (−ε), |ε| < �. (3c)

Here, fL/R(ε) is the equilibrium Fermi function at the
corresponding potential, i.e., fL(ε) = f0(ε − eV ) and fR(ε) =
f0(ε) as f0(ε) ≡ [exp (ε/kBTbath) + 1]−1 at base temperature
Tbath and the zero of energy is set to the chemical potential,
denoted below with μ. Below the gap, these boundary
conditions conserve the balance of positive and negative
charge excitations (3b) and ensure that there is no energy
current entering the superconductor [Eq. (3c)], due to Andreev
reflection. Above the gap, we simply have continuity of the
particle distribution across the contact since the interface is
assumed transparent [Eq. (3a)]. At the dividing superconductor
at x = xc, we require

f (ε)|x=xc− = f (ε)|x=xc+ , (4a)

f (ε) = f0(ε), |ε| > �, (4b)

f (ε) = 1 − f (−ε), |ε| < �, (4c)

∂xf (ε)|x=xc− − ∂xf (−ε)
∣∣
x=xc−

= ∂xf (ε)|x=xc+ − ∂xf (−ε)
∣∣
x=xc+

, |ε| < �. (4d)

In addition to the requirement of continuity across x = xc,
Eq. (4a), we have the same conditions as above apart from
Eq. (4d), which requires that also the energy current is
conserved across x = xc. Physically, we assume that the
superconductor on top of the graphene flake acts as an electrode
for the high-energy electrons and does not noticeably affect the
low-energy ones. We also assume above and in the following
that � is constant: independent of position or heating in the
system.

The degree of inelastic scattering determines the state
of the system, which, in the presence of superconductors,
can become a quite complicated nonequilibrium state when
e-e relaxation is incomplete.12 On the other hand, when e-e
relaxation is complete, two separate alternatives are possible:
The system can either be in the equilibrium state f0(ε) with
bath temperature Tbath or in a so-called quasiequilibrium
state f0(ε) with electron temperature Te > Tbath depending
on whether the region in question is heated in one way or

another. In our configuration, regions 1 and 2 are separated
at x = xc by a grounding superconductor effective at ε > �.
Therefore, for the ideal case of complete e-e relaxation, region
2 remains in equilibrium at temperature Tbath and region 1 in
quasiequilibrium with Te determined by the heating voltage
V . However, when e-e relaxation is incomplete, the presence
of the heat link between the regions makes it a priori possible
that the system in region 2 is in any of these states: equilibrium,
quasiequilibrium, or nonequilibrium. Irrespective of the state
of the system, we can illustrate the heat distribution in the
system by defining a (local) effective electron temperature

kBTe =
√

6

π

√∫ ∞

−∞
ε [f (ε) − 1 + θ (ε)] dε, (5)

where θ (ε) is the Heaviside step function. This equates the
energy in the system to the thermal energy.

For the quantitative results, we solve the distribution
function f (ε) from the diffusion equation (1) and when V = 0,
we use the equilibrium Fermi function f (ε) = f0(ε) with a
given bath temperature Tbath. In both cases, the supercurrent
through graphene is18

IS(φ) = C

eRN

∫ ∞

0
dεjS(ε,φ)[1 − 2f (ε)], (6)

where we average f (ε) over the x coordinate. Here, C � 1
is a prefactor of the order unity describing the imperfections
in the measurement. The spectral supercurrent jS(ε,φ) of a
diffusive SNS system is defined in Ref. 18 and we determine
it numerically at the phase φ = 0.6π , which gives a fair
approximation for the low-temperature critical current Ic ≡
max IS(φ) ≈ IS(0.6π ).

We note that for graphene the diffusion constant D can
depend strongly on the type of disorder and on doping.
For screened Coulomb impurities,14,19 D ∝ τ ∝ |μ|. Below,
D is essentially fit to the experiments, so that we do not
need to specify the nature of the scatterers. The use of a
semiclassical diffusion approach has some limitations for
the description of graphene, however. The experimentally
found finite minimal conductivity at the CNP cannot be
explained without quantum-mechanical effects and a more
detailed description of the impurities and the nonuniform
doping effects they may introduce (charge puddles). These
are not an issue if the graphene is strongly n or p doped. In our
case, for Vg > VCNP the doping is of n type everywhere, but as
mentioned above, for Vg < VCNP p-n junctions are expected
to emerge close to the contacts.14–16 For these reasons, and
because of the assumed one-dimensionality, our description
should be viewed only as an effective model, in particular
when Vg < VCNP.

B. Inelastic interactions: Electron-phonon

We start by estimating the strength of e-ph contribution in
the inelastic collision integral. For this, we deem it sufficient
to pay attention only to acoustic phonons for the range
of temperatures and voltages relevant to our experiments
(T ,eV/kB ∼ 1 K ∼= 0.1 meV). The collision integral for
acoustic phonons in graphene has been derived in Ref. 9 but
here we only need the e-ph power discussed in Refs. 9, 20, 11,
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and 21. We assume the distribution f (ε) is sufficiently well
defined by the effective electron temperature Te of Eq. (5).
Then, in the limit (c/vF )|μ| � kBTe, where c is the sound
velocity, the e-ph power is

Pe-ph = �(μ)A
(
T 4

e − T 4
bath

)
, (7)

with a μ-dependent interaction constant �(μ) and the area
of the flake A. This power law is applicable up to very
close to the Dirac point since the condition μ = h̄vF kF =
h̄vF

√
πεrε0δVg/ed � kBTevF /c translates to

δVg �
(

kBTe

h̄c

)2
ed

πεrε0
(8)

for the distance from the Dirac point in terms of gate voltage
δVg ≡ |Vg − VCNP|. For Te ∼ 1 K, thickness of the gate oxide
d = 250 nm, relative permittivity εr = 4, and c = 0.02vF =
2 × 104 m/s, this becomes δVg � 15 mV. In our experimental
data the minimal δVg is about 1.5 V, and so the condition is not
violated. This estimate neglects the effect of charge puddles
close to the CNP, but we expect Eq. (7) to hold whenever the
use of our semiclassical approach is justified.

The total power injected into the system is Pin = V 2/RN

and if electron-phonon coupling is absent, all of this escapes
into the leads. If, furthermore, e-e interactions are neglected,
the electron distribution function is comprised of discrete steps
due to multiple Andreev reflections12 so that highest local
effective temperature of the system is roughly kBT max

e ≈ (� +
eV )/4.22 As a result, energy escape takes place also at eV 	
�. In the presence of e-e interactions, Te is reduced from this
value so that for strong interactions, kBT max

e ≈ eV/4, as in
a diffusive conductor without superconductivity (notice that,
at high voltages, a hot spot is formed in the middle of the
normal-conducting region 1, so that T max

e becomes high while
the average Te remains much lower). For Te � Tbath

Pe-ph

Pin
= �AT 4

e RN

V 2
, (9)

and we see that the relative importance of e-ph interaction
increases in two cases: first with increasing eV and second
with eV decreasing below � when e-e interaction is absent.
We evaluate the both possibilities to obtain a range for eV

where Pe-ph is significant.
The value for the e-ph interaction constant has not

been measured but we obtain a theoretical upper estimate
� = k4

BD2π2|μ|/(60h̄5ρv3
F c3) < 6.9 × 10−3 W/K4 m2 for

graphene mass density ρ = 0.76 mg/m2, deformation poten-
tial constantD = 10 eV (see, for example, Ref. 23, whereD ≈
5 eV), and chemical potential μ = 0.22 eV, corresponding to
Vg = +30 V. This is roughly an order of magnitude smaller
than e-ph interaction in metals,20 when the reduced dimen-
sionality of graphene is taken into account using thickness
∼1 Å. Setting A ≈ 2.8 μm ×4.0 μm, �/kB ≈ 1.12 K, and
RN ≈ 1 k�, yields Pe-ph

Pin
< 0.013 × (kBTe/�)4/(eV/�)2. We

then have the result

Pe-ph

Pin
< 5 × 10−5

(
eV

�

)2 (
1 + �

eV

)4

, (10)

assuming kBTe = (� + eV )/4. The ratio is above 1% when
eV < 0.083� or eV > 12�, while our measurements are

focused on the range eV = 0.5 . . . 5�. We emphasize that
in this estimate we used the hot-spot temperature, which is
much larger than the average Te at high voltages. On the
other hand, at low voltages, we assumed a total absence of
e-e interaction resulting in a high Te of the order �. Generally,
Te can be expected to be even smaller than estimated above
and we conclude that for our experiment e-ph coupling can
be neglected.

C. Inelastic interactions: Electron-electron

Coulomb interactions in graphene have been discussed,
for example, in Refs. 6, 7, and 24. However, most of the
existing results are for clean, charge-neutral graphene, where
the golden-rule collision integrals are furthermore plagued by
divergences.7 A full theory of e-e interactions for diffusive
graphene that would be valid at both the Dirac point and at
finite doping is currently lacking. In particular it is not known
if a well-defined quasiequilibrium state ever exists in diffusive
graphene biased far from equilibrium, although it is often a
convenient assumption.14 Since the interband relaxation due
to e-e collisions is expected to be weak,6,25,26 electrons and
holes (or electrons in the conduction and valence bands) may
in any case have to be treated separately.26

As explained above, our semiclassical approach restricts
our calculation in principle to the strongly doped regime, where
only one charge carrier is dominant. In this case the system may
be expected to behave somewhat similarly to other disordered
two-dimensional conductors. Thus a reasonable starting point
for an effective description is the Altshuler-Aronov theory27

for diffusive normal metals. The collision integral for a well-
screened diffusive wire in two dimensions is27,28

Ie−e[f (ε)] = κe−e

∫ ∞

−∞
d(h̄ω)

∫ ∞

−∞
dε′|h̄ω|−1

×[I in(ω,ε,ε′) − I out(ω,ε,ε′)] (11)

with I in(ω,ε,ε′) = [1 − f (ε)][1 − f (ε′)]f (ε − h̄ω)f (ε′ +
h̄ω) and I out(ω,ε,ε′) = f (ε)f (ε′)[1 − f (ε − h̄ω)][1 −
f (ε′ + h̄ω)]. While the distribution functions are assumed
position dependent, we disregard any such dependence in κe-e

for simplicity and the prefactor is then given by

κe-e = 1

4πh̄2v2
F NF τ

= v2
F

16|μ|D. (12)

Here, we use the density of states at the Fermi level for
graphene,29

NF = 2

π

|μ|
(h̄vF )2

, (13)

including spin and valley degeneracy.
We can also obtain an order of magnitude estimate for

the e-e relaxation rate from Eq. (11). For this, we take only
the outscattering term and set f (ε) = 1 for the initial state
population. At ε = μ, this gives the temperature-dependent
scattering rate

1

τe−e

= 4κe−ekBTe ln
T1

Te

(14)

valid at low energies ∼kBTe. Note that a (low-energy) cutoff
is required to remove a logarithmic divergence at small ω,
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characteristic to two-dimensional systems.30 The cutoff energy
is h̄ω0 = 4kBT 3

e /T 2
1 where T1 = 4μ2D3e4N2

F /(h̄kBε2
0v

4
F ) and

ε0 is the vacuum permittivity. We note that Eq. (14) is the
same as the temperature-dependent e-e scattering rate given
in Ref. 28 but without the explicit assumption μ = mev

2
F /2

of parabolic dispersion with the electron mass me. Because of
this, we have also in a similar fashion replaced me = 2μ/v2

F

in the formula for T1 above, but due to the logarithmic nature
of Eq. (14), this does not significantly affect the order of
magnitude estimate.

D. Final model in dimensionless form

With the e-e interaction as the sole contributor to the
inelastic relaxation, we now cast the diffusion equation (1) in a
dimensionless form directly applicable for numerical solution:

∂2
x̃ f = −Ke-eĨe-e, (15)

where x̃ = x/L with L denoting the total length of the
graphene flake. The dimensionless parameter Ke-e describing
the strength of e-e interaction in two dimensions is derived
from κe-e given above and expressed in terms of experimentally
relevant parameters. When all energies are normalized by �,

Ke-e = L2

D
�κe-e = 1

4

RN

RQ

�

ETh

w

L
, (16)

where we have used the formula σ = e2NF D = L/RNw for
conductivity and Eqs. (2) and (13) for D and NF . Here, RN is
the normal-state resistance of the graphene flake, RQ ≡ h/e2

is the quantum of resistance, ETh = h̄D/L2 is the Thouless
energy, w is the width of the flake and L is its length.
Note that Ke-e now depends on the dimensions of the sample
and we define it, together with the other extensive materials
parameters, here for the whole flake.

The e-e relaxation rate can be expressed in terms of Ke-e

simply by replacing κe-e in Eq. (14). Thus 1/τe-e ∝ Ke-e.
Additionally, ETh ∝ D and RN ∝ D−1, so that the parameter
Ke-e is predicted to scale as Ke-e ∝ D−2 ∝ R2

N . We note
again that while Ke-e does not depend explicitly on μ, such
dependence is in principle present through the diffusion
constant D(μ) (and hence RN and ETh). Below, we use only
the single parameter Ke-e to characterize the e-e interaction
and extract it from the experiments.

IV. RESULTS

A. Electron-electron strength

In order to access the e-e scattering strength Ke-e, we make
two measurements. In the first one, the bath temperature is
varied. In the second, an injection voltage at the left supercon-
ductor is used to heat up the graphene flake. The critical current
and the retrapping current in region 2 are then measured as
functions of temperature and voltage, respectively. In the first
measurement, the system is in thermal equilibrium, whereas in
the second one, it can be in a nonequilibrium state. Therefore
we use the first measurement to determine ETh in regions 1 and
2, and the second measurement to compare the experiments
with our theoretical model.
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FIG. 7. (Color online) Critical current in region 1 as a function of
bath temperature. Solid lines are the fits to the theory, using ETh and
C as the fitting parameters.

In thermal equilibrium, we calculate the theoretical value
for Ic simply by using an equilibrium function f0 at tempera-
ture Tbath in Eq. (6). Here and below, � = 100 μeV ∼= 1.1 K
so that the critical temperature Tc ∼ 0.6 K. Since jS(ε,φ) in
Eq. (6) is dependent on ETh, we may fit the calculated value of
Ic to the measured one at different Vg (Figs. 7 and 8), to obtain
the values in Table I. These values for ETh are subsequently
used to determine the effective lengths L1 and L2 of regions 1
and 2, respectively. We assume that the diffusion constant D

is constant throughout the graphene flake so that

L1

L2
=

√
ETh(region 2)

ETh(region 1)
≈ 5

3
. (17)

This approximate value is used in the simulation and assuming
L = L1 + L2, we have L1 = 1.75 μm and L2 = 1.05 μm. For
consistency, we may also check the elastic scattering length
l = 2L2ETh/h̄vF resulting from the values we obtained for
ETh and depending on Vg , we have l = 90 . . . 140 nm. At
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FIG. 8. (Color online) Critical current in region 2 as a function of
bath temperature. Solid lines are the fits to the theory, using ETh and
C as the fitting parameters.
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TABLE I. Graphene properties determined for different gate
voltages. The results for ETh and C [Eq. (6)] are based on critical-
current measurements for which we have data for all gate voltages
apart from Vg = −30 V and Vg = −3.4 V in region 1.

Region 1 Region 2

Vg μ (meV) RN ETh/� C RN ETh/� C

−30 V 150 760 � N/A N/A 708 � 1/3.5 0.33
−9.5 V 42 1100 � 1/6.4 0.11 547 � 1/2.35 0.42
−3.4 V 96 650 � N/A N/A 467 � 1/2.5 0.39
+30 V 220 330 � 1/7.7 0.18 337 � 1/2.7 0.36

Vg = 30 V, the value l = 120 nm is relatively close to the
experimentally determined l = 70 nm and the difference can
be due to inaccuracy in determining the effective length.

In the second experiment we use the heater voltage V at
Tbath = 80 mK and, as a result, Ic in region 2 is dependent on
the strength of the e-e interaction parametrized by Ke-e. We
proceed by fitting the theoretical and experimental results for
Ic at a single small voltage value eV < � with Ke-e as the
fit parameter. We then use the resulting Kfit

e-e to compute the
whole Ic(V ) curve. The results for different Vg are given in
Fig. 9. The corresponding Kfit

e−e are listed in Table II together

with the values for K
theory
e-e , obtained from the theoretically

derived Eq. (16) using experimentally determined materials
parameters.

From Eq. (16) we expect the e-e scattering strength to
scale as Ke-e ∼ R2

N . The values of Ke-e extracted from the
experiments are shown in Fig. 10 as a function of RN from
Table II, assuming additionally that when RN → 0, Ke-e → 0.
The data support the quadratic behavior.

FIG. 9. (Color online) Critical current in region 2 as a function of
heater voltage. Solid lines are the fits to the theory, using Ke-e as the
fitting parameter at a single point eV < � (the exact value depends
on the gate voltage).

TABLE II. Parameter values determined for the graphene flake.
Resistance is calculated as the sum of RN in regions 1 and 2, whereas
Thouless energy is obtained assuming that the diffusion constant
determined from the Ic measurements in region 2 is homogeneous
throughout the whole flake. The theoretical value for Ke-e is calculated
from Eq. (16).

The whole flake

Vg RN ETh/� D Kfit
e-e K

theory
e-e

−30 V 1468 � 1/24.9 0.046 m2/s 30.8 0.51
−9.5 V 1647 � 1/16.6 0.069 m2/s 51.9 0.38
−3.4 V 1117 � 1/17.8 0.065 m2/s 26.6 0.28
+30 V 667 � 1/19.5 0.060 m2/s 7.6 0.18

B. State of the system: Quasi- or nonequilibrium?

We determine the state of the system and assess how
sensitive it is to any changes in Ke-e by looking at the electron
distribution functions f (ε). In our theoretical model based
on metallic e-e interaction, gate voltage has no explicit effect
on the results and any gate dependence is due only to such
dependence in the materials parameters such as RN . We
therefore use the parameter values from the case where Vg =
−30 V as a representative example. In addition, we set eV =
2.5� so that any peculiarities due to the nonequilibrium state
should be visible both in regions 1 and 2. A true nonequilibrium
distribution with Ke-e = 0 is given in Fig. 11 and we notice
that, in the absence of relaxation, f (ε) remains constant in
region 2. This happens because the electrostatic potential at the
middle superconductor is fixed. The numerically determined
f (ε) for Ke-e = 30.8 (Table II) is shown in Fig. 12. We see that
while the electrons clearly have a nonequilibrium distribution
near the superconductors, where f (ε) in any case is strongly
affected by the boundary conditions of Eqs. (3) and (4), in the

FIG. 10. (Color online) Values for the dimensionless e-e interac-
tion strength Ke-e of Eq. (16) determined from the experimental data
and shown with respect to the normal-state resistance of the graphene
flake RN .
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FIG. 11. (Color online) Electron distribution functions f (ε) for a
representative case (Vg = −30 V, eV = 2.5�) at different positions
of the graphene flake. Here, e-e interactions are neglected, i.e., Ke-e =
0. Dashed line is the quasiequilibrium function f0(ε) at the effective
temperature Te corresponding to the nonequilibrium function f (ε).

middle of both regions 1 and 2 f (ε) is smoothed very close to
a thermal distribution.

The question now regarding the state of the system is this:
Is f (ε) in region 2 effectively a thermal (quasi)equilibrium
distribution? If so, the e-e interaction is weak enough to let
some of the energy injected into region 1 leak into region 2,
but still so strong that it forces the system in region 2 into a
thermal state. To answer this, we calculate Ic as a function
of heater voltage for several values of Ke-e in Fig. 13. First,
the expected value of supercurrent is clearly dependent on
the value of Ke-e in this range so the measurement can be
used to determine Ke-e with satisfactory precision. Second,
as there is no plateau of constant Ic at small voltages, the
system is only in complete equilibrium state at V = 0. Third, at
voltages eV � � there is a clear difference between the critical
current obtained using actual nonequilibrium distributions and
their quasiequilibrium counterparts, i.e., equilibrium functions
f0(ε) with Te determined from f (ε). This implies that not only
electron heating but also the formation of nonequilibrium state
affects the observable supercurrent at eV � �. For voltages
smaller than this, a quasiequilibrium description for the system
is apt.

C. Relaxation time

We finally estimate the e-e relaxation time in our sample.
Using the theoretically derived form of κe-e [Eq. (12)] together
with the experimental parameters μ and D in Tables I and II,
we find a reference value τ

theory
e-e from Eq. (14). Depending on

the gate voltage, τ theory
e-e = 80 . . . 300 ns at Te = Tbath = 80 mK

and τ
theory
e-e = 15 . . . 50 ps at Te = 0.5 K, with shorter relaxation

times obtained closer to the Dirac point. As the relaxation rate

FIG. 12. (Color online) Electron distribution functions f (ε)
for a representative case (Vg = −30 V, eV = 2.5�) at different
positions of the graphene flake. Here, the strength of the e-e
interaction corresponds to the value of Table II, which we obtained
by fitting to the experimental data: Ke-e = 30.8. Dashed line is
the quasiequilibrium function f0(ε) at the effective temperature Te

corresponding to the nonequilibrium function f (ε). The spectral
supercurrent jS(ε) [Eq. (6)] is shown as a black dotted line with
arbitrary units and centered so that jS = 0 when |ε| < ETh =
�/3.5.

FIG. 13. (Color online) Calculated critical current as a func-
tion of voltage for different values of the e-e strength Ke-e.
The solid lines are the results from the nonequilibrium distri-
butions f (ε), whereas the dashed lines demonstrate how Ic dif-
fers if quasiequilibrium functions with effective electron temper-
atures are used instead. Blue crosses correspond to the measured
values.
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is proportional to the e-e scattering strength, 1/τe-e ∝ κe-e =
Ke-e × D/(L2�) [Eq. (16)], our measurements for Kfit

e-e given
in Table II suggest e-e relaxation times that are smaller than
the values above by a factor Kfit

e-e/K
theory
e-e = 40 . . . 140. At Te =

Tbath, this gives τ fit
e-e = 0.6 . . . 7 ps and at Te = 0.5 K, τ fit

e-e =
0.1 . . . 1 ps. We are not aware of any comparable theoretical
or experimental results for graphene in the low-energy regime.
The e-e scattering times have been estimated in Ref. 24, but
for ballistic graphene at much larger energies, making a direct
comparison unfeasible.

V. DISCUSSION

We have measured the strength of e-e interaction in
graphene at four different gate voltages. From Eq. (16) we
find the expected values for the parameter Ke-e describing
the interaction strength as given in Table II. The measured
values are roughly 40–140 times larger than expected from
the Altshuler-Aronov theory with the largest differences
closer to the Dirac point. Discrepancies between theory and
experiments are reported also in metallic wires (Ag),31 but
there the differences are sample-specific and only up to a
factor of 20, with the measured value larger there as well.
Even though the strength of the e-e interaction is stronger
than expected, the system is still not thermalized and the
incomplete e-e relaxation can be seen at heater voltages V

well below the superconducting gap by measuring the critical
current. The result at low voltages is seen as an energy
leak from the heater junction and increasing temperature in
the thermometer region. For eV > �, also the electrons in
the thermometer are driven into a nonequilibrium state where a

thermal description with an effective temperature Te is no
longer enough. In addition to finding the magnitude of the e-e
scattering strength, we find that the scattering strength exhibits
a significant gate dependence, presumably due to changes in
charge density as the gate voltage is varied.

Finally, we note that we have also estimated the interaction
strength between electrons and acoustic phonons in our setup
with an aim to measure it. However, since the e-e interaction
is relatively strong, we expect that Te is at most of the order
of the heater voltage except when eV 	 �. Consequently, the
expected electron-phonon power at eV � � becomes even
lower than predicted by our estimate in Sec. III B. At the
other end of the scale, eV > �, the effective temperature
needs to be increased yet further for a high ratio Pe-ph/Pin ∼
T 4

e /V 2. This results in notable heating also in the thermometer
region, making a critical current measurement such as the
one used here very difficult, unless strong thermal isolation is
established between the heater and the thermometer regions.
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(2010).

10X. Du, I. Skachko, and E. Y. Andrei, Phys. Rev. B 77, 184507
(2008).

11S. S. Kubakaddi, Phys. Rev. B 79, 075417 (2009).
12F. Pierre, A. Anthore, H. Pothier, C. Urbina, and D. Esteve, Phys.

Rev. Lett. 86, 1078 (2001).
13S. Roddaro, A. Pescaglini, D. Ercolani, L. Sorba, F. Giazotto, and

F. Beltram, Nano Res. 4, 259 (2011).

14J. K. Viljas, A. Fay, M. Wiesner, and P. J. Hakonen, Phys. Rev. B
83, 205421 (2011).

15E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and
K. Kern, Nat. Nanotech. 3, 486 (2008).

16T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, Phys. Rev.
B 79, 245430 (2009).

17P. Virtanen and T. T. Heikkilä, Appl. Phys. A 89, 625 (2007).
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