22 research outputs found

    A hybrid actuator disc - full rotor CFD methodology for modelling the effects of wind turbine wake interactions on performance

    Get PDF
    The performance of individual wind turbines is crucial for maximum energy yield, however, their performance is often reduced when turbines are placed together in an array. The wake produced by the rotors interacts with downstream turbines, resulting in a reduction in power output. In this paper, we demonstrate a new and faster modelling technique which combines actuator disc theory, modelled using wind tunnel validated Computational Fluid Dynamics (CFD), and integrated into full rotor CFD simulations. This novel hybrid of techniques results in the ability to analyse performance when simulating various array layouts more rapidly and accurately than using either method on its own. It is shown that there is a significant power reduction from a downstream turbine that is subjected to the wake of an upstream turbine, and that this is due to both a reduction in power in the wind and also due to changes in the aerodynamics. Analysis of static pressure along the blade showed that as a result of wake interactions, a large reduction in the suction peak along the leading edge reduced the lift generated by the rotor and so reduced the torque production and the ability for the blade to extract energy from the wind

    Development of efficient designs of cooking systems. II. Computational fluid dynamics and optimization

    No full text
    Sections 2-6 of Part I were devoted to the analysis of heat transfer characteristics of cookers. In all the experiments, only water was employed as a working medium. Now, we extend such an analysis to the actual cooking process in order to arrive at an improved cooking device. The major strategies for the optimization of energy utilization is to design appropriate insulation that has been obtained by two cover vessels. In order to select an air gap, the flow and temperature patterns in the air gap have been extensively analyzed using computational fluid dynamics (CFD). The flow pattern and heat transfer in cooking pots have also been analyzed by CFD. This has enabled us to design suitable internals for minimizing the stratification of temperature. The understanding of fluid mechanics has also given basis for selection of heat flux, gap between burner tip and cooker bottom, and temperature of flue gases leaving the cooker. Chemical engineering principles have been used for modeling and optimization. Kinetics have been obtained in batch cookers. The knowledge of kinetics, thermal mixing, axial mixing, and optimum selection of insulation have been employed for the development of continuous cookers. The continuous mode of operation also helps in saving of energy. Systematic data have been collected for the design and scale up of continuous cookers. © 2011 American Chemical Society

    Development of efficient designs of cooking systems. I. Experimental

    No full text
    In the conventional cooking practice, where a pot or a pan is directly placed on a flame, the thermal energy efficiency is in the range of 10-25%. It was thought desirable to increase this efficiency up to 60% or more. The cooking systems can be of various sizes. In the developing world (85% of the worlds population), open pan cooking is largely still practiced at the family level (4-10 people) or at the community level (50-2000 people or more). The latter requirement is encountered in schools, homes for senior citizens, jails, social and/or religious centers (temples, mosques, churches), social and/or educational functions (conferences, marriages, celebrations, etc.), remand homes, etc. For these different types of final application, in the present work, cooking systems have been developed. A systematic work has has been reported regarding the effect of several parameters on thermal efficiency. The parameters include the cooker size, number of pots, size and aspect ratio of the pots, heat flux, flame size, flux-time relationship, insulating alternatives, etc. Local and global optima of the parameters have been obtained, resulting in thermal efficiency of about 70%. © 2011 American Chemical Society

    FishShapes v1: functionally relevant measurements of teleost shape and size on three dimensions

    No full text
    Teleost fishes account for 96% of all fish species and exhibit a spectacular variety of body forms. Teleost lineages range from deep-bodied to elongate (e.g. eels, needlefish), laterally compressed (e.g. ribbonfish) to globular (e.g. pufferfish) and include uniquely shaped lineages such as seahorses, flatfishes and ocean sunfishes. Adaptive body shape convergence within fishes has long been hypothesized but the nature of the relationships between fish form and ecological and environmental variables remain largely unknown at the macroevolutionary scale. To facilitate the investigation of the interacting factors influencing teleost body shape evolution we measured 8 functionally relevant linear traits on adult-sized specimens along with specimen mass. Linear measurements of standard length, maximum body depth, maximum fish width, lower jaw length, mouth width, head depth, minimum caudal peduncle depth and minimum caudal peduncle width were taken in millimeters with calipers, or tape measures for oversized specimens. We measured these traits on a total of 16523 specimens (1-3 specimens per species) at the Smithsonian National Museum of Natural History and took approximately 7000 person hours of data collection to complete. The data went through a three-step error-checking process to clean and validate the data and then species averages were calculated. We present the complete specimen dataset, which encompasses approximately one fifth of extant teleost species diversity, spanning ~90% of teleost families and ~96% of orders. The species and family names are compatible with the FishBase taxonomy (Pauly & Froese, 2019) and the order information with the phylogenetically informed taxonomy of Betancur-R et al. (2014). This dataset is licensed under a Creative Commons Attribution - Non-Commercial 4.0 International License (CC BY-NC), please cite this paper when using the data or a subset of it.,Use any text editor or spreadsheet software to access the datase
    corecore