6,590 research outputs found
Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces
The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The validity of the Cox-Merz rule is checked
Parallel Recursive State Compression for Free
This paper focuses on reducing memory usage in enumerative model checking,
while maintaining the multi-core scalability obtained in earlier work. We
present a tree-based multi-core compression method, which works by leveraging
sharing among sub-vectors of state vectors.
An algorithmic analysis of both worst-case and optimal compression ratios
shows the potential to compress even large states to a small constant on
average (8 bytes). Our experiments demonstrate that this holds up in practice:
the median compression ratio of 279 measured experiments is within 17% of the
optimum for tree compression, and five times better than the median compression
ratio of SPIN's COLLAPSE compression.
Our algorithms are implemented in the LTSmin tool, and our experiments show
that for model checking, multi-core tree compression pays its own way: it comes
virtually without overhead compared to the fastest hash table-based methods.Comment: 19 page
Recommended from our members
The Visual Exploration of Insurance Data in Google Earth
Visualisation and geovisualisation techniques can both complement and help communicate the results of GIS and other analyses in the exploration of multivariate datasets and may provide insights and solutions for managing exposure and potential loss. Graphical techniques and the use of geobrowsers such as Google Earth are also being used in a communicative role to engage a variety of different audiences within insurance companies with information about policies, exposure and potential losses. In this paper, we focus on one particular geo-browser, Google Earth, which provides access to a rich array of datasets including aerial imagery, roads, administrative boundaries and photographs and, importantly, allows additional data to be added through the welldocumented KML format
Optically activated ZnO/Sio2/Si cantilever beams
The photomechanical effect induced by periodically varying sub-bandgap illumination in thin ZnO films deposited on oxidized Si has been demonstrated for the first time. The efficiency of this effect is at least one order of magnitude higher as compared to the photothermal activation of Si. Thus it can be considered as a powerful optical drive for resonant sensors. A phenomenological model of the mechanisms involved in the process is proposed. The optomechanical effect can also be used as a complementary method in determination of the surface state parameters of ZnO films
Exact solution of the Zeeman effect in single-electron systems
Contrary to popular belief, the Zeeman effect can be treated exactly in
single-electron systems, for arbitrary magnetic field strengths, as long as the
term quadratic in the magnetic field can be ignored. These formulas were
actually derived already around 1927 by Darwin, using the classical picture of
angular momentum, and presented in their proper quantum-mechanical form in 1933
by Bethe, although without any proof. The expressions have since been more or
less lost from the literature; instead, the conventional treatment nowadays is
to present only the approximations for weak and strong fields, respectively.
However, in fusion research and other plasma physics applications, the magnetic
fields applied to control the shape and position of the plasma span the entire
region from weak to strong fields, and there is a need for a unified treatment.
In this paper we present the detailed quantum-mechanical derivation of the
exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static
magnetic field. Notably, these formulas are not much more complicated than the
better-known approximations. Moreover, the derivation allows the value of the
electron spin gyromagnetic ratio to be different from 2. For
completeness, we then review the details of dipole transitions between two
hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various
approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script
Gene loss and lineage specific restriction-modification systems associated with niche differentiation in the Campylobacter jejuni Sequence Type 403 clonal complex
Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation
IGR J22517+2218=MG3 J225155+2217: a new gamma-ray lighthouse in the distant Universe
We report on the identification of a new soft gamma ray source, namely IGR
J22517+2218, detected with IBIS/INTEGRAL. The source, which has an observed
20-100 keV flux of ~4 x10^-11 erg cm-2 s-1, is spatially coincident with MG3
J225155+2217, a quasar at z=3.668. The Swift/XRT 0.5-10 keV continuum is flat
(Gamma=1.5) with evidence for a spectral curvature below 1-2 keV either due to
intrinsic absorption (NH=3 +/- 2 x 10^22 cm-2) or to a change in slope (Delta
Gamma= 0.5). X-ray observations indicate flux variability over a 6 days period
which is further supported by a flux mismatch between Swift and INTEGRAL
spectra. IGR J22517+2218 is radio loud and has a flat radio spectrum; optically
it is a broad line emitting quasar with the atypical property of hosting a
narrow line absorption system. The Source Spectral Energy Distribution is
unusual compared to blazars of similar type: either it has the synchrotron peak
in the X/gamma-ray band (i.e. much higher than generally observed) or the
Compton peak in the MeV range (i.e. lower than typically measured). IGR
J22517+2218=MG3 J225155+2217 is the second most distant blazar detected above
20 keV and a gamma-ray lighthouse shining from the edge of our Universe.Comment: 4 pages, 4 figures, Accepted for publication in Astrophysical Journal
Letter
On the Nature of MeV-blazars
Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the
high energy gamma-ray band imply that there may be two types of such objects:
those with steep gamma-ray spectra, hereafter called MeV-blazars, and those
with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference
can be explained in the context of the ERC (external-radiation-Compton) model
using the same electron injection function. A satisfactory unification is
reachable, provided that: (a) spectra of GeV-blazars are produced by internal
shocks formed at the distances where cooling of relativistic electrons in a jet
is dominated by Comptonization of broad emission lines, whereas spectra of
MeV-blazars are produced at the distances where cooling of relativistic
electrons is dominated by Comptonization of near-IR radiation from hot dust;
(b) electrons are accelerated via a two step process and their injection
function takes the form of a double power-law, with the break corresponding to
the threshold energy for the diffusive shock acceleration. Direct predictions
of our model are that, on average, variability time scales of the MeV-blazars
should be longer than variability time scales of the GeV-blazars, and that both
types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa
MOTIFATOR: detection and characterization of regulatory motifs using prokaryote transcriptome data
Summary: Unraveling regulatory mechanisms (e.g. identification of motifs in cis-regulatory regions) remains a major challenge in the analysis of transcriptome experiments. Existing applications identify putative motifs from gene lists obtained at rather arbitrary cutoff and require additional manual processing steps. Our standalone application MOTIFATOR identifies the most optimal parameters for motif discovery and creates an interactive visualization of the results. Discovered putative motifs are functionally characterized, thereby providing valuable insight in the biological processes that could be controlled by the motif.
- âŠ