6,590 research outputs found

    Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces

    Get PDF
    The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The validity of the Cox-Merz rule is checked

    Parallel Recursive State Compression for Free

    Get PDF
    This paper focuses on reducing memory usage in enumerative model checking, while maintaining the multi-core scalability obtained in earlier work. We present a tree-based multi-core compression method, which works by leveraging sharing among sub-vectors of state vectors. An algorithmic analysis of both worst-case and optimal compression ratios shows the potential to compress even large states to a small constant on average (8 bytes). Our experiments demonstrate that this holds up in practice: the median compression ratio of 279 measured experiments is within 17% of the optimum for tree compression, and five times better than the median compression ratio of SPIN's COLLAPSE compression. Our algorithms are implemented in the LTSmin tool, and our experiments show that for model checking, multi-core tree compression pays its own way: it comes virtually without overhead compared to the fastest hash table-based methods.Comment: 19 page

    Optically activated ZnO/Sio2/Si cantilever beams

    Get PDF
    The photomechanical effect induced by periodically varying sub-bandgap illumination in thin ZnO films deposited on oxidized Si has been demonstrated for the first time. The efficiency of this effect is at least one order of magnitude higher as compared to the photothermal activation of Si. Thus it can be considered as a powerful optical drive for resonant sensors. A phenomenological model of the mechanisms involved in the process is proposed. The optomechanical effect can also be used as a complementary method in determination of the surface state parameters of ZnO films

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script

    Gene loss and lineage specific restriction-modification systems associated with niche differentiation in the Campylobacter jejuni Sequence Type 403 clonal complex

    Get PDF
    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation

    IGR J22517+2218=MG3 J225155+2217: a new gamma-ray lighthouse in the distant Universe

    Full text link
    We report on the identification of a new soft gamma ray source, namely IGR J22517+2218, detected with IBIS/INTEGRAL. The source, which has an observed 20-100 keV flux of ~4 x10^-11 erg cm-2 s-1, is spatially coincident with MG3 J225155+2217, a quasar at z=3.668. The Swift/XRT 0.5-10 keV continuum is flat (Gamma=1.5) with evidence for a spectral curvature below 1-2 keV either due to intrinsic absorption (NH=3 +/- 2 x 10^22 cm-2) or to a change in slope (Delta Gamma= 0.5). X-ray observations indicate flux variability over a 6 days period which is further supported by a flux mismatch between Swift and INTEGRAL spectra. IGR J22517+2218 is radio loud and has a flat radio spectrum; optically it is a broad line emitting quasar with the atypical property of hosting a narrow line absorption system. The Source Spectral Energy Distribution is unusual compared to blazars of similar type: either it has the synchrotron peak in the X/gamma-ray band (i.e. much higher than generally observed) or the Compton peak in the MeV range (i.e. lower than typically measured). IGR J22517+2218=MG3 J225155+2217 is the second most distant blazar detected above 20 keV and a gamma-ray lighthouse shining from the edge of our Universe.Comment: 4 pages, 4 figures, Accepted for publication in Astrophysical Journal Letter

    On the Nature of MeV-blazars

    Full text link
    Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the high energy gamma-ray band imply that there may be two types of such objects: those with steep gamma-ray spectra, hereafter called MeV-blazars, and those with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference can be explained in the context of the ERC (external-radiation-Compton) model using the same electron injection function. A satisfactory unification is reachable, provided that: (a) spectra of GeV-blazars are produced by internal shocks formed at the distances where cooling of relativistic electrons in a jet is dominated by Comptonization of broad emission lines, whereas spectra of MeV-blazars are produced at the distances where cooling of relativistic electrons is dominated by Comptonization of near-IR radiation from hot dust; (b) electrons are accelerated via a two step process and their injection function takes the form of a double power-law, with the break corresponding to the threshold energy for the diffusive shock acceleration. Direct predictions of our model are that, on average, variability time scales of the MeV-blazars should be longer than variability time scales of the GeV-blazars, and that both types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa

    MOTIFATOR: detection and characterization of regulatory motifs using prokaryote transcriptome data

    Get PDF
    Summary: Unraveling regulatory mechanisms (e.g. identification of motifs in cis-regulatory regions) remains a major challenge in the analysis of transcriptome experiments. Existing applications identify putative motifs from gene lists obtained at rather arbitrary cutoff and require additional manual processing steps. Our standalone application MOTIFATOR identifies the most optimal parameters for motif discovery and creates an interactive visualization of the results. Discovered putative motifs are functionally characterized, thereby providing valuable insight in the biological processes that could be controlled by the motif.

    A continuum model of lipid bilayers

    Full text link
    • 

    corecore