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Abstract. This paper focuses on reducing memory usage in enumerative
model checking, while maintaining the multi-core scalability obtained in
earlier work. We present a multi-core tree-based compression method,
which works by leveraging sharing among sub-vectors of state vectors.
An algorithmic analysis of both worst-case and optimal compression ratios
shows the potential to compress even large states to a small constant on
average (8 bytes). Our experiments demonstrate that this holds up in
practice: the median compression ratio of 279 measured experiments is
within 17% of the optimum for tree compression, and five times better
than the median compression ratio of Spin’s Collapse compression.
Our algorithms are implemented in the LTSmin tool, and our experiments
show that for model checking, multi-core tree compression pays its own
way: it comes virtually without overhead compared to the fastest hash
table-based methods.

1 Introduction

Many verification problems are computationally intensive tasks that can benefit
from extra speedups. Considering recent hardware trends, these speedups do not
come automatically for sequential exploration algorithms, but require exploitation
of the parallelism within multi-core CPUs. In a previous paper, we have shown
how to realize scalable multi-core reachability [14], a basic task shared by many
different approaches to verification.

Reachability searches through all the states of the program under verification
to find errors or deadlocks. It is bound by the number of states that fit into the
main memory. Since states typically consist of large vectors with one slot for each
program variable, only small parts are updated for every step in the program.
Hence, storing a state in its entirety results in unnecessary and considerable
overhead. State compression solves this problem, as this paper will show, at a
negligible performance penalty and with better scalability than uncompressed
hash tables.

Related work. In the following, we identify compression techniques suitable for
(on-the-fly) enumerative model checking. We distinguish between generic and
informed techniques.

Generic compression methods, like Huffman encoding and run length encoding,
have been considered for explicit state vectors with meager results [9, 12]. These



entropy encoding methods reduce information entropy [7] by assuming common
bit patterns. Such patterns have to be defined statically and cannot be “learned”
(as in dynamic Huffman encoding), because the encoding may not change during
state space exploration. Otherwise, desirable properties, like fast equivalence
checks on states and constant-time state space inclusion checks, will be lost.

Other work focuses on efficient storage in hash tables [6, 10]. The assumption
is that a uniformly distributed subset of n elements from the universe U is stored
in a hash table. If each element in U hashes to a unique location in the table, only
one bit is needed to encode the presence of the element. If, however, the hash
function is not so perfect or U is larger than the table, then at least a quotient
of the key needs to be stored and collisions need to be dealt with. This technique
is therefore known as key quotienting. While its benefit is that the compression
ratio is constant for any input (not just constant on average), compression is only
significant for small universes [10], smaller than we encounter in model checking
(this universe consists of all possible combinations of the slot values, not to be
confused with the set of reachable states, which is typically much smaller).

The information theoretical lower bound on compression, or the information
entropy, can be reduced further if the format of the input is known in advance
(certain subsets of U become more likely). This is what constitutes the class
of informed compression techniques. It includes works that provide specialized
storage schemes for certain specific state structures, like petri-nets [8] or timed
automata [16]. But, also Collapse compression introduced by Holzmann for
the model checker Spin [11]. It takes into account the independent parts of the
state vector. Independent parts are identified as the global variables and the local
variables belonging to different processes in the Spin-specific language Promela.

Blom et al. [1] present a more generic approach, based on a tree. All variables
of a state are treated as independent and stored recursively in a binary tree of hash
tables. The method was mainly used to decrease network traffic for distributed
model checking. Like Collapse, this is a form of informed compression, because
it depends on the assumption that subsequent states only differ slightly.

Problem statement. Information theory dictates that the more information we
have on the data that is being compressed, the lower the entropy and the
higher the achievable compression. Favorable results from informed compression
techniques [1, 8, 11,16] confirm this. However, the techniques for petri-nets and
timed automata employ specific properties of those systems (a deterministic
transition relation and symbolic zone encoding respectively), and, therefore, are
not applicable to enumerative model checking. Collapse requires local parts
of the state vector to be syntactically identifiable and may thus not identify
all equivalent parts among state vectors. While tree compression showed more
impressive compression ratios by analysis [1] and is more generically applicable,
it has never been benchmarked thoroughly and compared to other compression
techniques nor has it been parallelized.

Generic compression schemes can be added locally to a parallel reachability
algorithm (see Sec. 2). They do not affect any concurrent parts of its implementa-
tion and even benefit scalability by lowering memory traffic [12]. While informed
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compression techniques can deliver better compression, they require additional
structures to record uniqueness of state vector parts. With multiple processors
constantly accessing these structures, memory bandwidth is again increased
and mutual exclusion locks are strained, thereby decreasing performance and
scalability. Thus the benefit of informed compression requires considerable design
effort on modern multi-core CPUs with steep memory hierarchies.

Therefore, in this paper, we address two research questions: (1) does tree
compression perform better than other state-of-the-art on-the-fly compression
techniques (most importantly Collapse), (2) can parallel tree compression be
implemented efficiently on multi-core CPUs.

Contribution. This paper explains a tree-based structure that enables high com-
pression rates (higher than any other form of explicit-state compression that
we could identify) and excellent performance. A parallel algorithm is presented
(Sec. 3) that makes this informed compression technique scalable in spite of the
multiple accesses to shared memory that it requires, while also introducing maxi-
mal sharing. With an incremental algorithm, we further improve the performance,
reducing contention and memory footprint.

An analysis of compression ratios is provided (Sec. 4) and the results of
extensive and realistic experiments (Sec. 5) match closely to the analytical
optima. The results also show that the incremental algorithm delivers excellent
performance, even compared to uncompressed verification runs with a normal
hash table. Benchmarks on multi-core machines show near-perfect scalability,
even for cases which are sequentially already faster than the uncompressed run.

2 Background

In Sec. 2.1, we introduce a parallel reachability algorithm using a shared hash
table. The table’s main functionality is the storage of a large set of state vectors
of a fixed length k. We call the elements of the vectors slots and assume that
slots take values from the integers, possibly references to complex values stored
elsewhere (hash tables or canonization techniques can be used to yield unique
values for about any complex value). Subsequently, in Sec. 2.2, we explain two
informed compression techniques that exploit similarity between different state
vectors. While these techniques can be used to replace the hash table in the
reachability algorithm, they are are harder to parallelize as we show in Sec. 2.3.

2.1 Parallel Reachability

The parallel reachability algorithm (Alg. 1) launches N threads and assigns the
initial states of the model under verification only to the open set S1 of the first
thread (l.1). The open set can be implemented as a stack or a queue, depending
on the desired search order (note that with N > 1, the chosen search order will
only be approximated, because the different threads will go through the search
space independently). The closed set of visited states, DB, is shared, allowing

3



threads executing the search algorithm (l.5-11) to synchronize on the search space
and each to explore a (disjoint) part of it [14]. The find or put function returns
true when succ is found in DB, and inserts it, when it is not.

Load balancing is needed so that workers that run out of work (Sid = ∅)
receive work from others. We implemented the function load balance as a form of
Synchronous Random Polling [19], which also ensures valid termination detec-
tion [14]. It returns false upon global termination.

1 S1.putall(initial states)
2 parallel for (id := 1 to N)
3 while ( load balance (Sid))
4 work := 0
5 while (work < max ∧ state := Sid.get())
6 count := 0
7 for (succ ∈ next state(state))
8 count := count + 1
9 work := work + 1

10 if (¬find or put(DB, succ)) then Sid.put(succ)
11 if (0 = count) then ...report deadlock...

Alg. 1: Parallel reachability algorithm with shared state storage

DB is generally implemented as a hash table. In [14], we presented a lockless
hash table design, with which we were able to obtain almost perfect scalability.
However, with 16 cores, the physical memory, 64GB in our case, is filled in a
matter of seconds, making memory the new bottleneck. Informed compression
techniques can solve this problem with an alternate implementation of DB.

2.2 Collapse & Tree Compression

Collapse compression stores logical parts of the state vector in separate hash
tables. A logical part is made up of state slots local to a specific process in the
model, therefore the hash tables are called process tables. References to the parts
in those process tables are then stored in a root hash table. Tree compression is
similar, but works on the granularity of slots: tuples of slots are stored in hash
tables at the fringe of the tree, which return a reference. References are then
bundled as tuples and recursively stored in tables at the nodes of the binary tree.
Fig. 1 shows the difference between the process tree and tree compression.

a b c d p q u v

a b c d p q u v

p q u va b c d

vector process tree binary tree

Fig. 1: Process table and (binary) tree for the system X(a, b, c, d)‖Y (p, q)‖Z(u, v).
Taken from [4].
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Fig. 2: Sharing of subtrees in tree compression

When using a tree to store equal-length state vectors, compression is realized
by the sharing of subtrees among entries. Fig. 2 illustrates this. Assuming that
references have the same size as the slot values (say b bits), we can determine
the compression rate in this example.

Storing one vector in a tree, requires storing information for the extra tree
nodes, resulting in a total of 8b + (4 − 1) × 2b = 14b (not taking into account
any implementation overhead from lookup structures). Each additional vector,
however, can potentially share parts of the subtree with already-stored vectors.
The second and third, in the example, only require a total of 6b each and the
fourth only 2b. The four vectors would occupy 4 × 8b = 32b when stored in a
normal hash table. This gives a compression ratio of 28b/32b = 7/8, likely to
improve with each additional vector that is stored. Databases that store longer
vectors also achieve higher compression rates as we will investigate later.

2.3 Why Parallelization is not Trivial

Adding generic compression techniques to the above algorithm can be done
locally by adding a line compr := compress(succ) after l.9, and storing compr in
DB. This calculation in compress only depends on succ and is therefore easy to
parallelize. If, however, a form of informed compression is used, like Collapse or
tree compression, the compressed value comes to depend on previously inserted
state parts, and the compress function needs (multiple) accesses to the storage.
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Fig. 3: Speedup with Collapse.

Global locking or even
locking at finer levels of gran-
ularity can be devastating for
multi-core performance for sin-
gle hash table lookups [14].
Informed compression algo-
rithms, however, need multi-
ple accesses and thus require
careful attention when par-
allelized. Fig. 3 shows that
Spin’s Collapse suffers from
scalability problems (experi-
mental settings can be found
in Sec. 5).
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3 Tree Database

Sec. 3.1 first describes the original tree compression algorithm from [1]. In Sec. 3.2,
maximal sharing among tree nodes is introduced by merging the multiple hash
tables of the tree into a single fixed-size table. By simplifying the data structure
in this way, we aid scalability. Furthermore, we prove that it preserves consistency
of the database’s content. However, as we also show, the new tree will “confuse”
tree nodes and erroneously report some vectors as seen, while in fact they are
new. This is corrected by tagging root tree nodes, completing the parallelization.

Sec. 3.3 shows how tree references can also be used to compact the size of the
open set in Alg. 1. Now that the necessary space reductions are obtained, the
current section is concluded with an algorithm that improves the performance
of the tree database by using thread-local incremental information from the
reachability search (Sec. 3.4).

3.1 Basic Tree Database

The tuples shown in Fig. 2 are stored in hash tables, creating a balanced binary
tree of tables. Such a tree has k − 1 tree nodes, each of which has a number of
siblings of both the left and the right subtree that is equal or off by one. The
tree create function in Alg. 2 generates the Tree structure accordingly, with Nodes
storing left and right subtrees, a Table table and the length of the (sub)tree k.

The tree find or put function takes as arguments a Tree and a state vector V
(both of the same size k > 1), and returns a tuple containing a reference to the
inserted value and a boolean indicating whether the value was inserted before
(seen, or else: new). The function is recursively called on half of the state vector
(l.9-10) until the vector length is one. The recursion ends here and a single value
of the vector is returned. At l.11, the returned values of the left and right subtree
are stored as a tuple in the hash table using the table find and put operation,
which also returns a tuple containing a reference and a seen/new boolean.

The function lhalf takes a vector V as argument and returns the first half
of the vector: lhalf(V ) = [V0, . . . , V(d k

2 e−1)], and symmetrically rhalf(V ) =
[Vd k

2 e, . . . , V(k−1)]. So, |lhalf(V )| = d|V |/2e, and |rhalf(V )| = b|V |/2c.

1 type Tree = Node(Tree left, Tree right , Table table , int k) | Leaf

2 proc Tree tree create (k)
3 if (k = 1)
4 return Leaf

5 return Node(tree create(
⌈

k
2

⌉
), tree create(

⌊
k
2

⌋
), Table(2), k)

6 proc ( int , bool) tree find or put (Leaf, V )
7 return (V [0], )

8 proc ( int , bool) tree find or put (Node(left , right , table , k), V )
9 (Rleft, ) := tree find or put(left, lhalf(V ))

10 (Rright, ) := tree find or put(right, rhalf(V ))
11 return table find or put ( table , [Rleft, Rright])

Alg. 2: Tree data structure and algorithm for the tree find or put function.
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Implementation requirements. A space-efficient implementation of the hash
tables is crucial for good compression ratios. Furthermore, resizing hash tables
are required, because the unpredictable and widely varying tree node sizes (tables
may store a crossproduct of their children as shown in Sec. 4). However, resizing
replaces entries, in other words, it breaks stable indexing, thus making direct
references between tree nodes impossible. Therefore, in [1], stable indices were
realized by maintaining a second table with references. Thus solving the problem,
but increasing the number of cache misses and the storage costs per entry by 50%.

3.2 Concurrent Tree Database

Three conflicting requirements arise when attempting to parallelize Alg. 2: (1)
resizing is needed because the load of individual tables is unknown in advance
and varies highly, (2) stable indexing is needed, to allow for references to table
entries, and (3) calculating a globally unique index concurrently is costly, while
storing it requires extra memory as explained in the previous section.

An ideal solution would be to collapse all hash tables into a single non-resizable
table. This would ensure stable indices without any overhead for administering
them, while at the same time allowing the use of a scalable hash table design [14].
Moreover, it will enable maximal sharing of values between tree nodes, possibly
further reducing memory requirements. But can all tree nodes safely be merged
without corrupting the contents of the database?

We can describe table find or put as a injective function: Hk : Nk → N. The
tree find or put function with one hash table can be expressed as a recurrent rela-
tion: Tk(A0, . . . , A(k−1)) = H2(Td k

2 e(A0, . . . , A(d k
2 e−1)), Tb k

2 c(Ad k
2 e, . . . , A(k−1))),

with T1 = I (the identity function). We have proven that this is an injective
function [?]. Therefore, an insert of a vector A ∈ Nk always yields a unique value
for the root of the tree (Tk), thus demonstrating that the contents of the tree
database are not corrupted by merging the hash tables of the tree nodes.

However, the above also shows that Alg. 2 will not always yield the right answer
with merged hash tables. Consider: T2(A0, A1) = H2(0, 0) = Tk(A0, . . . , A(k−1)).
In this case, when the root node Tk is inserted into H, it will return a boolean
indicating that the tuple (0, 0) was already seen, as it was inserted for T2 earlier.

1 type ConcurrentTree = CTree(Table table, int k)

2 proc ( int , bool) tree find or put ( tree , V )
3 R := tree rec(tree , V )
4 B := if CAS(R.tag, non root, is also root) then new else seen
5 return (R, B)

6 proc int tree rec (CTree(table , k), V )
7 if (k = 1)
8 return V [0]

9 Rleft := tree rec(CTree(table,
⌈

k
2

⌉
), lhalf(V ))

10 Rright := tree rec(CTree(table,
⌊

k
2

⌋
), rhalf(V ))

11 (R, ) := table find or put(table , [Rleft, Rright])
12 return R

Alg. 3: Data structure and algorithm for parallel tree find or put function.
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Nonetheless, we can use the fact that Tk is an injection to create a concurrent
tree database by adding one bit (a tag) to the merged hash table. Alg. 3 defines a
new ConcurrentTree structure, only containing the merge table and the length of
the vectors k. It separates the recursion in the tree rec function, which only returns
a reference to the inserted node. The tree find or put function now atomically
flips the tag on the entry (the tuple) pointed to by R in table from non root to
is also root, if it was not non root before (see l.4). To this end, it employs the
hardware primitive compare-and-swap (CAS), which takes three arguments: a
memory location (in this case, R.tag), an old value and a designated value. CAS
atomically compares the value val at the memory location with old, if equal, val
is replaced by designated and true is returned, if not, false is returned.

a b

c d

1 b b

b
2

Fig. 4: Mem-
ory layout for
CTree(Table, 4)
with 〈a, b, c, d〉
inserted.

Implementation considerations. Crucial for efficient concur-
rency is memory layout. While a bit array or sparse bit vector
may be used to implement the tags (using R as index), its
parallelization is hardly efficient for high-throughput applica-
tions like reachability analysis. Each modified bit will cause
an entire cache line (with typically thousands of other bits) to
become dirty, causing other CPUs accessing the same memory
region to be forced to update the line from main memory. The
latter operation is multiple orders of magnitude more expensive
than normal (cached) operations. Therefore, we merge the bit
array/vector into the hash table table as shown in Fig 4, for
this increases the spatial locality of node accesses with a factor
proportional to the width of tree nodes. The small column on
the left represents the bit array with black entries indicating
is also root. The appropriate size of b is discussed in Sec. 4.

Furthermore, we used the lockless hash table presented
in [14], which normally uses memoized hashes in order to speed up probing over
larger keys. Since the stored tree nodes are relatively small, we dropped the
memoize hashes, demonstrating that this hash table design also functions well
without additional memory overhead.

3.3 References in the Open Set

Now that tree compression reduces the space required for state storage, we
observed that the open sets of the parallel reachability algorithm can become a
memory bottleneck [15]. A solution is to store references to the root tree node in
the open set as illustrated by Alg. 4, which is a modification of l.5-11 from Alg. 1.

1 while ( ref := Sid.get())
2 state := tree get (DB, ref)
3 for (succ ∈ next state(state))
4 (newref, seen) := tree find or put (DB, succ)
5 if (¬seen)
6 Sid.put(newref)

Alg. 4: Reachability analysis algorithm with references in the open set.
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The tree get function is shown in Alg. 5. It reconstructs the vector from a
reference. References are looked up in table using the table get function, which
returns the tuple stored in the table. The algorithm recursively calls itself until
k = 1, at this point ref or val is known to be a slot value and is returned as
vector of size 1. Results then propagate back up the tree and are concatenated
on l.7, until the full vector of length k is restored at the root of the tree.

1 proc int[] tree get(CTree(table , k), val or ref )
2 if (k = 1)
3 return [val or ref ]
4 [Rleft, Rright] := table get(table, val or ref)

5 Vleft := tree get(CTree(table,
⌈

k
2

⌉
), Rleft)

6 Vright := tree get(CTree(table,
⌊

k
2

⌋
), Rright)

7 return concat(Vleft, Vright)

Alg. 5: Algorithm for tree vector retrieval from a reference

3.4 Incremental Tree Database

The time complexity of the tree compression algorithm, measured in the
number of hash table accesses, is linear in the number of state slots. However,
because of today’s steep memory hierarchies these random memory accesses are
expensive. Luckily, the same principle that tree compression exploits to deliver
good state compression, can also be used to speedup the algorithm. The only
entries that need to be inserted into the node table are the slots that actually
changed with regard to the previous state and the tree paths that lead to these
nodes. For a state vector of size k, the number of table accesses can be brought
down to log2(k) (the height of the tree) assuming only one slot changed. When c
slots change, the maximum number of accesses is c× log2(k), but likely fewer if
the slots are close to each other in the tree (due to shared paths to the root).

Alg. 6 is the incremental variant of the tree find or put function. The callee has
to supply additional arguments: P is the predecessor state of V (V ∈ next state(P )
in Alg. 1) and RTree is a ReferenceTree containing the balanced binary tree of
references created for P . RTree is also updated with the tree node references
for V . tree find or put needs to be adapted to pass the arguments accordingly.

1 type ReferenceTree = RTree(ReferenceTree left , ReferenceTree right , int ref ) | Leaf

2 proc ( int , bool) tree rec (CTree(table , k), V , P , Leaf)
3 return (V [0], V [0] = P [0])

4 proc ( int , bool) tree rec (CTree(table , k), V , P , inout RTree(left, right, ref ))

5 (Rleft, Bleft) := tree rec(CTree(table,
⌈

k
2

⌉
), lhalf(V ), lhalf(P ), left)

6 (Rright, Bright) := tree rec(CTree(table,
⌊

k
2

⌋
), rhalf(V ), rhalf(P ), right)

7 if (¬Bleft ∨ ¬Bright)
8 ( ref , ) := table find or put (table, [Rleft, Rright])
9 return ( ref , Bleft ∧Bright)

Alg. 6: ReferenceTree structure and incremental tree rec function.
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The boolean in the return tuple now indicates thread-local similarities between
subvectors of V and P (see l.3). This boolean is used on l.7 as a condition for the
hash table access; if the left or the right subvectors are not the same, then RTree is
updated with a new reference that is looked up in table. For initial states, without
predecessor states, the algorithm can be initialized with an imaginary predecessor
state P and tree RTree containing reserved values, thus forcing updates.
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Fig. 5: Speedup of Alg. 6 wrt. Alg. 3.

We measured the speedup of the
new incremental algorithm compared
to the original (for the experimental
setup see Sec. 5). Fig. 5 shows that
the speedup is linearly dependent on
log(k), as expected.

The incremental tree find or put
function changed its interface with re-
spect to Alg. 3. Alg. 7 presents a new
search algorithm (l.5-11 in Alg. 1)
that also records the reference tree
in the open set. RTree refs has be-
come an input of the tree database,
because it is also an output, it is copied to new refs.

1 while ((prev , refs ) := Sid.get())
2 for (next ∈ next state(prev))
3 new refs := copy(refs )
4 ( , seen) := tree find or put (DB, next, prev, new refs)
5 if (¬seen)
6 Sid.put((next, new refs))

Alg. 7: Reachability analysis algorithm with incremental tree database.

Because the internal tree node references are stored, Alg.7 increases the size
of the open set by a factor of almost two. To remedy this, either the tree get
function (Alg. 5) can be adapted to also return the reference trees, or the tree get
function can be integrated into the incremental algorithm (Alg. 6). (We do not
present such an algorithm due to space limitations.) We measured little slowdown
due to the extra calculations and memory references introduced by the tree get
algorithm (about 10% across a wide spectrum of input models).

4 Analysis of Compression Ratios

In the current section, we establish the minimum and maximum compression
ratio for tree and Collapse compression. We count references and slots as stored
in tuples at each tree node (a single such node entry thus has size 2). We fix both
references and slots to an equal size.1

1 For large tree databases references easily become 32 bits wide. This is usually an
overestimation of the slot size.
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Tree compression. The worst case scenario occurs when storing a set of vectors S
with each k identical slot values (S = {〈s, . . . , s〉 | s ∈ {1, . . . , |S|}}) [1]. In this
case, n = |S| and storing each vector v ∈ S takes 2(k − 1) (k − 1 node entries).
The compression is: (2(k − 1)n)/(nk) = 2− 2/k. Occupying more tree entries is
impossible, so always strictly less than twice the memory of the plain vectors is
used.

Blom et al. [1] also give an example that results in good tree compression: the
storage of the cross product of a set of vectors S = P ×P , where P consists of m
vectors of length j = 1

2k. The cross product ensures maximum reuse of the left
and the right subtree, and results in n = |S| = |P |2 = m2 entries in only the root
node. The left subtree stores (j − 1)|P | entries (taking naively the worst case),
as does the right, resulting in a total of of |S| + 2(j − 1)|P | tree node entries.
The size of the tree database for S becomes 2n + 2m(k − 2). The compression
ratio is 2/k + 2/m− 4/(mk) (divide by nk), which can be approximated by 2/k
for sufficiently large n (and hence m). Most vectors can thus be compressed to a
size approaching that of one node entry, which is logical since each new vector
receives a unique root node entry (Sec. 3.2) and the other node entries are shared.

s0 .........

.........

k

sk-1

log2(k)-1

4 Analysis of Compression Ratios

In this section, we establish the minimum and maximum compression rate. A tree
node stores two references (to other nodes), two slot values or a combination of
both. We fix the size of slots to be equal to the size of references1. The worst case
scenario occurs when we store a set of vectors S with k identical slot values in the
tree database (S = {�s, . . . , s� | s ∈ {1, . . . , |S|}}) [3]. In this case, n = |S| = |P |
and storing each vector v ∈ S takes 2(k − 1) (k for the state slots + k − 2 for
the tree). The compression is: (2(k − 1)n)/(nk) = 2− 2/k. Occupying more tree
entries is impossible, so always strictly less than twice the memory of the plain
vectors is used.

Blom et al. [3] also give an example that results in good tree compression:
the storage of the cross product of a set of vectors S� = P × P , where P consists
of m vectors of length j = 1

2k. The cross product ensures maximum reuse of the
left and the right subtree, and results in n = |S| = |P |2 = m2 entries in only the
top node, the other nodes all using less than m entries. The left subtree stores
(j − 1)|P | entries (taking naively the worst case), as does the right, resulting in a
total of of |S| + 2(j − 1)|P | tree node entries. The size of the tree database for S
becomes 2n + 2m(k− 2). The compression ratio is 2/m− 4/mk + 2/k (divide by
nk), which can be approximated by 2/k for sufficiently large n (and hence m).
Most vectors can thus be compressed to a size approaching that of one tree node
entry (the top node).
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k
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Fig. 2: Sharing of subtrees in tree compression

likely to improve with each additional vector that is stored and for databases
that store longer vectors.

So what is the minimum and maximum compression rate that can be achieved?
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2k}. The nodes directly above the leafs, each receive the cross product of that as
entries, etc, until the root node which receives n entries (see Fig. 5).

With this insight, we could continue to calculate the total node entries for the
optimal case and try to deduce a smaller lower bound, but we can already see
that the difference between the optimal case and the previous case is negligible,
since: 2( l
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for any reasonably large n and k. In other words, the node entries of the subtrees
combined, are insignificant compared to the n entries in the root of the tree.

From the above, we can conclude that tree compression already approaches
the near-optimal ratios when only the top node receives a cross product of entries;

1 For large state spaces, the ones we are interested in, this is an overestimation.
Extremely large state variables (slots of 64 bits) could be indexed separately in a
hash table, it follows from the analysis that this hardly increases space requirements.
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In this section, we establish the minimum and maximum compression rate. A tree
node stores two references (to other nodes), two slot values or a combination of
both. We fix the size of slots to be equal to the size of references1. The worst case
scenario occurs when we store a set of vectors S with k identical slot values in the
tree database (S = {�s, . . . , s� | s ∈ {1, . . . , |S|}}) [3]. In this case, n = |S| = |P |
and storing each vector v ∈ S takes 2(k − 1) (k for the state slots + k − 2 for
the tree). The compression is: (2(k − 1)n)/(nk) = 2− 2/k. Occupying more tree
entries is impossible, so always strictly less than twice the memory of the plain
vectors is used.

Blom et al. [3] also give an example that results in good tree compression:
the storage of the cross product of a set of vectors S� = P × P , where P consists
of m vectors of length j = 1

2k. The cross product ensures maximum reuse of the
left and the right subtree, and results in n = |S| = |P |2 = m2 entries in only the
top node, the other nodes all using less than m entries. The left subtree stores
(j − 1)|P | entries (taking naively the worst case), as does the right, resulting in a
total of of |S| + 2(j − 1)|P | tree node entries. The size of the tree database for S
becomes 2n + 2m(k− 2). The compression ratio is 2/m− 4/mk + 2/k (divide by
nk), which can be approximated by 2/k for sufficiently large n (and hence m).
Most vectors can thus be compressed to a size approaching that of one tree node
entry (the top node).
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n) � 2( l
2 −2)

√
n,

for any reasonably large n and k. In other words, the node entries of the subtrees
combined, are insignificant compared to the n entries in the root of the tree.

From the above, we can conclude that tree compression already approaches
the near-optimal ratios when only the top node receives a cross product of entries;

1 For large state spaces, the ones we are interested in, this is an overestimation.
Extremely large state variables (slots of 64 bits) could be indexed separately in a
hash table, it follows from the analysis that this hardly increases space requirements.
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Fig. 6: Optimal entries per tree node level.

The optimal case occurs when
all the individual tree nodes store
cross products of their subtrees.
This occurs when the value dis-
tribution is equal over all slots:
S = {〈s0, . . . , sk−1〉 | si ∈
{1, . . . , k

√
n}} and that k = 2x. In

this situation, the k
2 leaf nodes of

the tree each receive k/2
√

n entries:
{〈si, si+1〉 | i = 2k}. The nodes
directly above the leafs, receive each the cross product of that as entries, etc,
until the root node which receives n entries (see Fig. 6).

With this insight, we could continue to calculate the total node entries for the
optimal case and try to deduce a smaller lower bound, but we can already see that
the difference between the optimal case and the previous case is negligible, since:
n+
√

n(k−2)−(n+2
√

n+4 4
√

n+. . . (log2(k) times) . . .+ 2
k

2/k
√

n)� n+
√

n(k−2),
for any reasonably large n and k. From the comparison between the good and
optimal case, we can conclude that only a cross product of entries in the root
node is already near-optimal; the only way to get bad compression ratios may be
when two related variables are located at different halves of the state vector.

Collapse compression. Since the leafs of the process table are directly connected
to the root, the compression ratios are easier to calculate. To yield optimal
compression for the process table, a more restrictive scenario, than described
for the tree above, needs to occur. We require p symmetrical processes with
each a local vector of m slots (k = p ×m). Related slots may only lay within
the bounds of these processes, take Sm = {〈s, . . . , s〉 | s ∈ {1, . . . , |Sm|}}. Each
combination of different local vectors is inserted in the root table (also if Sm =
{〈s, 1, . . . , 1〉 | s ∈ {1, . . . , |Sm|}}), yielding n = |Sm|p root table entries. The
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total size of the process table becomes pn + m p
√

n. The compression ratio is
(pn + m p

√
n)/nk = p

k + m
p
√

n
nk . For large n (hence m), the ratio approaches p

k .

Comparison. Tab. 1 lists the achieved compression ratio for states, as stored
in a normal hash table, a process table and a tree database under the different
scenarios that were sketched before. It shows that the worst case of the process
table is not as bad as the worst case achieved by the tree. On the other hand, the
best case scenario is not as good as that from the tree, which compresses in this
case to a fixed constant. We also saw that the tree can reach near-optimal cases
easily, placing few constraints on related slots (on the same half). Therefore, we
can expect the tree to outperform the compression of process table in more cases,
because the latter requires more restrictive conditions. Namely, related slots can
only be within the fixed bounds of the state vector (local to one process).

Table 1: Theoretical compression ratios of Collapse and tree compression.
Structure Worst case Best case

Hash table [14] 1 1

Process table 1 + p
k

p
k

Tree database (Alg. 2, 3) 2− 2
k

2
k

In practice. With a few considerations, the analysis of this section can be applied
to both the parallel and the sequential tree databases: (1) the parallel algorithm
uses one extra tag bit per node entry, causing insignificant overhead, and (2)
maximal sharing invalidates the worst-case analysis, but other sets of vectors
can be thought up to still cause the same worst-case size. In practice, we can
expect little gain from maximal sharing, since the likelihood of similar subvectors
decreases rapidly the larger these vectors are, while we saw that the most node
entries are likely near the top of the tree (representing larger subvectors). (3)
The original sequential version uses an extra reference per node entry of overhead
(50%!) to realize stable indexing (Sec. 3.1). Therefore, the proposed concurrent
tree implementation even improves the compression ratio by a constant factor.

5 Experiments

We performed experiments on an AMD Opteron 8356 16-core (4× 4 cores) server
with 64 GB RAM, running a patched Linux 2.6.32 kernel.2 All tools were compiled
using gcc 4.4.3 in 64-bit mode with high compiler optimizations (-O3).

We measured compression ratios and performance characteristics for the
models of the Beem database [18] with three tools: DiVinE 2.2, Spin 5.2.5
and our own model checker LTSmin [3, 15]. LTSmin implements Alg. 3 using
a specialized version of the hash table [14] which inlines the tags as discussed
at the end of Sec. 3.2. Special care was taken to keep all parameters across the
different model checkers the same. The size of the hash/node tables was fixed at

2 https://bugzilla.kernel.org/show_bug.cgi?id=15618, see also [14]
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228 elements to prevent resizing and model compilation options were optimized on
a per tool basis as described in earlier work [3]. We verified state and transition
counts with the Beem database and DiVinE 2.2. The complete results with over
1500 benchmarks are available online [13].

5.1 Compression Ratios

For a fair comparison of compression ratios between Spin and LTSmin, we must
take into account the differences between the tools. The Beem models have been
written in DVE format (DiVinE) and translated to Promela. The translated
Beem models that Spin uses may have a different state vector length. LTSmin
reads DVE inputs directly, but uses a standardized internal state representation
with one 32-bit integer per state slot (state variable) even if a state variable could
be represented by a single byte. Such an approach was chosen in order to reuse
the model checking algorithms for other model inputs (like mCRL, mCRL2 and
DiVinE [2]). Thus, LTSmin can load Beem models directly, but blows up the
state vector by an average factor of three. Therefore, we compare the average
compressed state vector size instead of compression ratios.

Table 2: Original and compressed state sizes and memory usage for LTSmin
with hash table (Table), Collapse (Spin) and our tree compression (Tree) for
a representative selection of all benchmarks.

Model
Orig. State [Byte] Compr. State [Byte] Memory [MB]

Spin Tree Spin Tree Tablea Spin Tree

at.6 68 56 36.9 8.0 8,576 4,756 1,227
iprotocol.6 164 148 39.8 8.1 5,842 2,511 322
at.5 68 56 37.1 8.0 1,709 1,136 245
bakery.7 48 80 27.4 8.8 2,216 721 245
hanoi.3 116 228 112.1 13.8 3,120 1,533 188
telephony.7 64 96 31.1 8.1 2,011 652 170
anderson.6 68 76 31.7 8.1 1,329 552 140
frogs.4 68 120 73.2 8.2 1,996 1,219 136
phils.6 140 120 58.5 9.3 1,642 780 127
sorter.4 88 104 39.7 8.3 1,308 501 105
elev_plan.2 52 140 67.1 9.2 1,526 732 100
telephony.4 54 80 28.7 8.1 938 350 95
fischer.6 92 72 43.7 8.4 571 348 66

a The hash table size is calculated on the base of the LTSmin state sizes

Table 2 shows the uncompressed and compressed vector sizes for Collapse
and tree compression. Tree compression achieves better and almost constant
state compression than Collapse for these selected models, even though original
state vectors are larger in most cases. This confirms the results of our analysis.

We also measured peak memory usage for full state space exploration. The
benefits with respect to hash tables can be staggering for both Collapse and
tree compression: while the hash table column is in the order of gigabytes, the
compressed sizes are in the order of hundreds of megabytes. An extreme case
is hanoi.3, where tree compression, although not optimal, is still an order of
magnitude better than Collapse using only 188 MB compared to 1.5 GB with
Collapse and 3 GB with the hash table.
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To analyze the influence of the model on the compression ratio, we plotted
the inverse of the compression ratio against the state length in Fig. 7. The line
representing optimal compression is derived from the analysis in Sec. 4 and is
linearly dependent on the state size (the average compressed state size is close to
8 bytes: two 32-bit integers for the dominating root node entries in the tree).
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Fig. 7: Compression ratios for 279 models of the Beem database are close to
optimal for tree compression.

With tree compression, a total of 279 Beem models could each be fully
explored using a tree database of pre-configured size, never occupying more
than 4 GB memory. Most models exhibit compression ratios close to optimal;
the line representing the median compression ratio is merely 17% below the
optimal line. The worst cases, with a ratio of three times the optimal, are likely
the result of combinatorial growth concentrated around the center of the tree,
resulting in equally sized root, left and right sibling tree nodes. Nevertheless,
most sub-optimal cases lie close too half of the optimal, suggesting only one “full”
sibling of the root node. (We verified this to be true for several models.)

Fig. 8 compares compressed state size of Collapse and tree compression.
(We could not easily compare compressed state space sizes due to differing number
of states for some models). Tree compression performs better for all models in
our data set. In many cases, the difference is an order of magnitude. While tree
compression has an optimal compression ratio that is four times better than
Collapse’s (empirically established), the median is even five times better for
the models of the Beem database. Finally, as expected (see Sec. 4), we measured
insignificant gains from the introduced maximal sharing.
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run-times for state space exploration
with either a hash table or tree com-
pression.

5.2 Performance & Scalability

We compared the performance of the tree database with a hash table in DiVinE
and LTSmin. A comparison with Spin was already provided in earlier work [14].
For a fair comparison, we modified a version of LTSmin3 to use the (three times)
shorter state vectors (char vectors) of DiVinE directly. Fig. 10 shows the total
runtime of 158 Beem models, which fitted in machine memory using both DiVinE
and LTSmin. On average the run-time performance of tree compression is close
to a hash table-based search (see Fig. 10(a)). However, the absolute speedup in
Fig. 10(b) shows that scalability is better with tree compression, due to a lower
memory footprint.

Fig. 9 compares the sequential and multi-core performance of the fastest hash
table implementation (LTSmin lockless hash table with char vectors) with the
tree database (also with char vectors). The tree matches the performance of the
hash table closely.

For both, sequential and multi-core, the performance of the tree database is
nearly the same as the fastest hash table implementation, however, with signif-
icantly lower memory utilization. For models with fewer states, tree database
performance is better than a hash table, undoubtedly due to better cache utiliza-
tion and lower memory bandwidth.

6 Conclusions

First, this paper presented an analysis and experimental evaluation of the com-
pression ratios of tree compression and Collapse compression, both informed
3 this experimental version is distributed separately from LTSmin, because it breaks

the language-independent interface.
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Fig. 10: Performance benchmarks for 158 models with DiVinE (hash table) and
with LTSmin using tree compression and hash table.

compression techniques that are applicable in on-the-fly model checking. Both
analysis and experiments can be considered an implementation-independent
comparison of the two techniques. Collapse compression was considered the
state-of-the-art compression technique for enumerative model checking. Tree
compression was not evaluated as such before. The latter is shown here to per-
form better than the former, both analytically and in practice. In particular, the
median compression ratio of tree compression is five times better than that of
Collapse on the Beem benchmark set. We consider this result representative to
real-world usage, due to the varied nature of the Beem models: the set includes
models drawn from extensive case studies on protocols and control systems, and,
implementations of planning, scheduling and mutual exclusion algorithms [17].

Furthermore, we presented a solution for parallel tree compression by merging
all tree-node tables into a single large table, thereby realizing maximal sharing
between entries in these tables. This single hash table design even saves 50% in
memory because it exhibits the required stable indexing without any bookkeeping.
We proved that the consistency is maintained and use only one bit per entry to
parallelize tree insertions. Lastly, we presented an incremental tree compression
algorithm that requires a fraction of the table accesses (typically O(log2(k)), i.e.,
logarithmic in the length of a state vector), compared to the original algorithm.

Our experiments show that the incremental and parallel tree database has the
same performance as the hash table solutions in both LTSmin and DiVinE (and
by implication Spin [14]). Scalability is also better. All in all, the tree database
provides a win-win situation for parallel reachability problems.

Discussion. The absence of resizing could be considered a limitation in certain
applications of the tree database. In model checking, however, we may safely
dedicate the vast majority of available memory of a system to the state storage.
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The current implementation of LTSmin [20] supports a maximum of 232 tree
nodes, yielding about 4× 109 states with optimal compression. In the future, we
aim to create a more flexible solution that can store more states and automatically
scales the number of bits needed per entry, depending on the state vector size.
What has hold us back thus far from implementing this are low-level issues, i.e.,
the ordering of multiple atomic memory accesses across cache line boundaries
behave erratically on certain processors.

While this paper discusses tree compression mainly in the context of reacha-
bility, it is not limited to this context. For example, on-the-fly algorithms for the
verification of liveness properties can also benefit from a space-efficient storage
of states as demonstrated by Spin with its Collapse compression.

Future Work. A few options are still open to improve tree compression. The small
tree node entries cover a limited universe of values: 1+2× log2(n). This is an ideal
case to employ key quotienting using Cleary [6] or Very Tight Hashtables [10].
Neither of the two techniques has been parallelized as far as we can tell.

Static analysis of the dependencies between transitions and state slots could
be used to reorder state slots and obtain a better balanced tree, and hence
better compression (see Sec. 4). Much like the variable ordering problem of
BDDs [5], finding the optimal reordering is an exponential problem (a search
through all permutations). While, we are able to improve most of the worse cases
by automatic variable reordering, we did not yet find a good heuristic for at least
all Beem models.

Finally, it would be interesting to generalize the tree database by accommo-
dating for the storage of vectors of different sizes.
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